OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org
International Conference on
Carbon Fibre Applications
São José dos Campos, Salvador, Brazil,
5–9 December 1983

[\textbf{AUToclave, CompressIOn MOuldIng*}]

by

Klaus Brunsch**

* The views expressed in this paper are those of the author and do not necessarily reflect the views of the secretariat of UNIDO. This document has been reproduced without formal editing. Mention of firm names and commercial products does not imply the endorsement of the United Nations Industrial Development Organization (UNIDO).

** Messerschmitt-Bölkow-Blohm GmbH, Helicopter Division, 8000 Munich, F.R.G.
Autoclave and compression moulding are well-known technologies in use for the fabrication of fibre composite structures. Aside of the general knowledge a lot of details has to be taken care of to ensure troublefree application.

This paper presents detail-information gathered with

- autoclave curing of extremely thin HM CFC (High Modulus Carbon-Fibre-Composite) face skin of space structures
- autoclave curing of thickness tapered HT (High Tensile) CFC skin of an AC taileron
- press curing of thick HT CFC rotorhub components
- and the use of an oven for vacuum bag curing
AUTOCLAVE - CURING OF EXTREMELY THIN HM CFC-SKINS

For the OTS (Orbital Test Satellite) and the INTELSAT V satellites CFC solar array structure have been developed and produced. For INTELSAT VI a hybrid CFC-AFC (Aramid Fibre Composite) solar array is being developed. A common feature of those arrays are the thin face skins.

For example the skin of the INTELSAT V array structure has a nominal thickness of .16 mm only - see figure 1.

The skins are produced by winding Thornel 75 S on a large mandrel. The uncured laminate is cut off the mandrel and carefully placed on a steel plate.

With curing there is a high risk of damage due to, a, difference of coefficient of thermal expansion of the cured CFC skin and the metal plate and, b, due to memory-effects and coefficient of thermal expansion of auxiliary materials.

The difference of coefficient of thermal expansion becomes effective in the cooling phase. The plate on which the skin is cured contracts and compressive load is introduced to the skin. With the respective material data (table I) it can be calculated. Unfortunately the low expansion material "Invar" is expensive and does have long lead time. Therefore a set up using mild steel plate was used for INTELSAT V (see figure 2).
The experience was, that the shrinking of the metal tool did contribute to compressive load on the very thin skin and that the skin failed with local instability. The problem was overcome by reducing the curing temperature from 120°C to 80°C with vacuum applied until cooling down to 65°C. To cure the resin completely, a 3 hrs 120°C post cure was used. Since that no more skins were cured to scrap.

Aside of the metal tool the influence of auxiliary materials like peel-ply and vacuum foil, bleeder lease and so on also must be considered. Production technology of all thermoplastic auxiliary materials includes stretching. At elevated temperature those materials shrink considerably.

Manufacturing trials with hybrid skins, 4 x 4 m wide, .14 mm Kevlar and .1 mm carbonfibre fabric composite to evaluate the curing procedure indicated severe problems.

For handling reasons an aluminum plate was used with the intention to let the composite slip. Therefore the auxiliary materials were not fixed to the plate. The cured skin was scrap because of severe wrinkling.

Thermal behaviour of the materials used was investigated. Both shrinkage of auxiliary material and very high coefficient of thermal expansion (table II) of fleece and peel-ply after curing of the picked up resin were found to cause the wrinkling. The problem was overcome by use of a "Kevlar-plate", about 2 mm thick and by fixing everything to this plate.
AUTOCLAVE CURING OF TAPERED SKINS OF AC TAILERON

In the recent years quite a lot of CFC usage for aircrafts concentrated on control surfaces. In the FRG a CFC taileron for the Tornado and horizontal and vertical CFC stabilizer for the Alphajet have been developed. The high concentration of load at the inboard end of the taileron and the service temperature of up to 135°C made the development a technologywise demanding task.

The curing technology to be used for such components does depend on a few major items: Use of bleeding or zerobleed prepreg and use of a flow controlled or not controlled resin system. For a fast flying aircraft a resin system with a high softening temperature should be used - for ease of production a flow controlled system is desirable. Unfortunately today’s ingredients to control flow tend to reduce especially wet softening temperature (table III).

With a flow controlled system both for bleed and zerobleed an example is presented.

The lay up scheme for the taileron skin is shown in figure 3. The curing set up for a bleeding system (6% resin bleed from 40 to 34% by weight) is shown in figure 4. It becomes evident, that carefull tapering of the bleeder lease layers is to be used to receive uniform resin content. The bleed technology results in low porosity on one hand, but also in high labour cost on the other hand. Therefore, zerobleed technology was investigated, too. The set up for curing the skin with zerobleed material is shown in figure 5, the simplification is evident.
Both examples shown make use of a flow controlled resin system (Ciba 914). Using a non flow controlled system - i.e. low viscosity - a completely different curing set up must be applied. A typical set up for the Fiberite 1076 system is shown in figure 6.

With such a system only flat components can be autoclave cured with a rigid mould on one side only. If there is any remarkable vertical extension a second rigid tool surface must withstand the hydraulic pressure of the resin.

Aside of the differences in the technology of vacuum set up, mould concepts are very important for cost effectiveness. For composite components with a thickness about equal or exceeding 2 mm mild steel or electroformed nickel are appropriate materials for the mould. In the recent years the technology of coldforming of mild steel has improved considerably.

The mould shown in figure 7 was produced to the close tolerances specified in the drawing. Moderately double curved shapes also can be made.

In Europe the prices for moulds produced with the technologies mentioned before, are about 3000.--DM/m² for mild steel and 6000.--DM till 8000.-- DM/m² for nickel, respectively, and therefore far below those of NC-milled moulds.
COMPRESSION MOULDING OF THICKWALL CFC-COMPONENTS

The fixed wing utilization of CFC normally leads to thin to medium thick wall components. Rather thick components out of composites are used for rotorhubs, for example for the wellknown "Starflex". Whilst this is a glassfibre design most of today's composite hub design use carbonfibres. Experience gained with the development of a carbon Fibre composite Elastomeric (FEL) bearing rotorsystem is tabled.

The structural components of this hub are two plates, each 55 mm thick, made out of C fabric-prepreg Fibredux 913C-815-40 (fig.8). For cost effectivenes machining was to be reduced to the minimum possible, a plate thickness of 55 -0,5 mm after curing was requested, also uniformity of fibre volume fraction. To reach this objective the following production sequence was developed:
- Production of 136 oversized single layer cuts
- Presscuring of each 8 cuts to a thickness of 3,2 mm at 85°C for three hours. This treatment consumes about 22% of the exotherm reaction energy.
- Cutting of the partially cured 8 layer prepreg by means of steel rule die to final dimension - .3 mm.
- Laying of the 17 partially cured cuts into the mould (fig.9).
- Curing in the closed steel mould - pressure to completely close the mould 5 - 8 bars, curing cycle see fig. 10.
- Removal of hot tool from press, disassembly of bolts to prevent the tool from shrinking onto the component.
Dimensional control:

Since second part the thickness of the plates varies from
54,5 to 54,8 mm, the requirements are met.

The experience to be drawn from this R+D program is:
- Curing of thick prepreg laminates requires special methods
to avoid overheating - steel rule dies are very cost effective
for medium quantity precision prepreg cuts up to about 5 mm in
thickness
- With appropriate tool design conical walls can be avoided
- Rather close thickness and fiber volume tolerances can be met.

ADVANCED CURING CONCEPT

Cost effective utilization of autoclave curing in aerospace
industry always creates logistic problems. Small autoclaves are
not cost effective in serial quantity production, large ones
need to be filled up to be so. Turn around time of individual
moulds to produce a given number of parts per day can be manifold
of that required if the tools could be used continously. The
general tendency, therefore, is to try to make use of curing in an
oven with vacuum applied to the laminate.

The MBB-Laupheim facility has installed one of the most advanced
production lines for vacuum-oven curing of composite structures.
The equipment is used for glass- and aramide phenolic prepregs
now but also can be used for carbon fibre components.
The most important features of this production line are:
Computer controlled transportation system, a continuous furnace,
four axis adjustable working places for manual prepreg appli-
cation and a powder-primer spray - and cure equipment.
Production is started by feeding into in the computer the drawing
number of parts, the number required and the dates when the parts
should be completed. The computer then defines the sequence for
the moulds to be taken from the store and controls their trans­
port to the primer application unit. The moulds are coated with
powder primer, the powder is cured in approximately 2 min by both
infrared radiation and hot air circulation. At the same time the
prepreg - pre cuts necessary for each individual part are assorted
into in steelwire baskets. These baskets are attached to the
coated moulds, which are transported to the intermediate store.
From there, again in a sequence defined by the computer, transpor­
tation to laminating place becoming free is done. After application
of prepreg, peel-ply, release foil and so on a reusable silicon
rubber mask is assembled to the mould. The set up is leak proof
tested.

During transportation to the intermediate store before the con­
tinuous furnace and during storage vacuum is maintained by special
vacuum valves which don't allow air to flow in the bag after
lines have been cut off. During curing in the continuous furnace
movable vacuum lines are connected to the moulds. After curing
moulds are automatically transferred to demoulding and mould
cleaning stations. Then release is applied and moulds are brought
back to the mould store again.
The computer controlled transportation system does provide good traceability in the laminating shop. Calculation of piece work based salaries is eased also.

Although the investment was in excess of 10 Mio DM an average 30% reduction in cost per part was achieved by installation of the equipment described above.

The paper presented gives an overview only. The author will be happy to give detailed verbal information on request.
TABLE I: MATERIAL DATA

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>COEFFICIENT OF THERMAL EXPANSION /RT/ /K⁻¹/</th>
<th>MODULUS OF ELASTICITY /RT/ /kN/mm²/</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD STEEL</td>
<td>11</td>
<td>210</td>
</tr>
<tr>
<td>"INVAR" *</td>
<td>1.2</td>
<td>200</td>
</tr>
<tr>
<td>75 S / CY 209; **</td>
<td>-1.2 x 10⁻⁶</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>40 x 10⁻⁶</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-0.5 x 10⁻⁶</td>
<td>11</td>
</tr>
<tr>
<td>T 300 / CY 209;</td>
<td>0.23 x 10⁻⁶</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>29 x 10⁻⁶</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.55</td>
<td>16</td>
</tr>
</tbody>
</table>

*Composition: Fe 63.1 %, Ni 36.2 %, Mn 0.4 %
** Composition: 60 Vol.-%

TABLE II: AUXILIARY MATERIAL DATA

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>SHRINKAGE 120°C, 4 hrs</th>
<th>COEFFICIENT OF THERMAL EXPANSION /K⁻¹/</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEL-PLY</td>
<td>1.5 %</td>
<td>54 x 10⁻⁶ / 40 % *</td>
</tr>
<tr>
<td>TEDLAR</td>
<td>1.5 %</td>
<td></td>
</tr>
<tr>
<td>PAN FLEECE</td>
<td>1.5 %</td>
<td>70 x 10⁻⁶ / 15 % *</td>
</tr>
<tr>
<td>PERFORATED FOIL</td>
<td>3.6 %</td>
<td></td>
</tr>
</tbody>
</table>

*percentage of resin picked up / per weight
TABLE III: SOFTENING TEMPERATURE, DRY AND AFTER STORAGE AT 70°C 75% REL. HUMIDITY/TORSION PENDULUM TEST
INTELSAT 5 SOLAR ARRAY STRUCTURE | FIGURE 1

INTELSAT 5, SKIN CURING VACUUM SET-UP | FIGURE 2
LAY-UP SCHEME OF TAILERON SKIN

NUMBER OF LAYERS
LAMINATE FAMILY 0°/90/±45°

CURING SET-UP FOR BLEEDING SYSTEM
VACUUM FOIL
BREATHER
TEFLON PRESS PLATE
PEEL PLY
CFC STRUCTURE
PEEL PLY
RELEASE FOIL

MOULD SURFACE

SEALANT RUBBER

VACUUM SET-UP FOR ZERO BLEED PREPREG
FIGURE 5

VACUUM FOIL
BREATHER
TEFLON PRESS PLATE
RELEASE FOIL
BREATHER
RELEASE FOIL
PERFORATED RELEASE FOIL
PEEL PLY
CFC STRUCTURE

MOULD SURFACE

SEALANT RUBBER

VACUUM SET-UP FOR NON FLOW CONTROLLED PREPREG
FIGURE 6
$P = 0.1 - 0.2 \text{ N/mm}^2$

UNTORQUE BOLTS

--- COUPLE, COMPONENT MIDDLE

--- COUPLES NEAR Mould

HEAT UP 70°C 70°C/90 min Dwell

1 2 3 4 5 6 /HRS/

70°C/180 min 80°C/40 min 135°C/90 min Dwell

135°C/30 min 60+15 min

CURING CYCLE

FIGURE 10