OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org
20020

WORKSHOP
ON
CO-PRODUCTS AND BY-PRODUCTS OF THE BAYER ALUMINA PRODUCTION

Budapest, Hungary

27 November - 6 December 1991.
WORKSHOP

ON

CO-PRODUCTS AND BY-PRODUCTS OF
THE BAYER ALUMINA PRODUCTION

Budapest, Hungary

CO-PRODUCTS AND BY-PRODUCTS OF THE BAYER ALUMINA PRODUCTION

HANDOUT

with the contribution of:

M. Altrichter
Gy. Baksa
J. Balogh
Gy. Bánvölgyi
M. Borsodi
A. Csanády
A. Czordás-Tóth
M. Dimitrova-Lukács
A. Farkas
J. Fekete
K. Fodor
M. Földvári
J. György

ész. Kívégi
A. Imre
R. Jelinkó
E. Juhász
ész. Kálmán
T. Kálmán
P. Lukács
E. Molnár
ész. Porkoláb
I. Sajó
J. Sasvári
K. Solymár
I. Songy

I. Somos
ész. Szabados
B. Szabó
I. Szabó
T. Szalai
G. Szaley
M. Tóth
M. Tóth-Gyutai
F. Valló
J. Vitéz
J. Zábrácski
J. Zöldi

edited by

L. Gillemot

The opinions expressed in this volume are those of the contributors and do not necessarily reflect the views of the secretariat of UNIDO.

Budapest, Hungary

CONTENTS

List of Content
List of Figures
List of Tables
Preface

1 APPLICATIONS AND DEVELOPMENT OF PRODUCTS CONTAINING ALUMINA AND/OR ALUMINIUM TRIHIDROXIDE

1.1 MAIN TRENDS OF THE FURTHER DEVELOPMENT OF THE ALUMINA PRODUCTION: GEOGRAPHICAL AND PRODUCT RESTRUCTURING

1.1.1 Geographical restructuring of the world alumina industry
 1.1.1.1 Changing of the alumina refining and smelter capacities by region
 1.1.1.2 Alumina production potential and costs

1.1.2 Technical development of the metal grade alumina production
 1.1.2.1 Material saving
 1.1.2.2 Energy saving
 1.1.2.3 Alumina quality and liquor productivity

1.1.3 Product restructuring
 1.1.3.1 Main strategies to produce specialty alumina chemicals

1.1.4 Forecast of the further development of the world alumina industry

References

1.2 PRODUCTION, USE AND MARKET FOR CO-PRODUCTS AND BY-PRODUCTS IN CONNECTION WITH BAYER ALUMINA PRODUCTION

1.2.1 Scope of co- and by-products

1.2.2 Co-products
 1.2.2.1 Bauxite
 1.2.2.2 Aluminium trihydroxide
 1.2.2.3 Aluminium trihydroxide for direct applications
 1.2.2.4 Transition aluminium oxides
 1.2.2.5 Calcined, fused and sintered aluminas

1.2.3 By-products
 1.2.3.1 Gallium
 1.2.3.2 Vanadium pentoxide

References
2 PRODUCTS AND THEIR TECHNOLOGIES

2.1 PRODUCTION OF ALUMINIUM TRISHYDROXIDE BASED PRODUCTS
AT THE AJKA ALUMINIUMINDUSTRIAL CO., LTD.

2.1.1 Application of ALOLT products
2.1.1.1 Floor carpets
2.1.1.2 Hard polyurethane foam
2.1.1.3 Soft polyurethane foams
2.1.1.4 Conveyor bands
2.1.1.5 PVC-coated tent-clothes
2.1.1.6 Glass fibre reinforced polyester resin products

2.1.2 Production by grinding
2.1.3.1 Principles of development of air-jet mill
2.1.3.2 Air-jet mills in practice
2.1.3.3 The external separator classifier, and cyclone

2.1.3 Description of the technological system
2.1.4 Production by crystallization

2.2 PRODUCTION OF SPECIAL ALUMINIUM-HYDROXIDES AND
ALUMINAS BASED ON THE BAYER CYCLE

2.2.1 Basic materials of specialty alumina-hydrate and alumina
products
2.2.2 Aluminium hydroxides
2.2.2.1 Liquor purification
2.2.2.2 Grinding and classification
2.2.2.3 Special precipitation methods for
producing super-fine aluminium hydroxides
and low Na_2O containing hydrate products
2.2.2.4 Surface treatment

2.2.3 Activated aluminas
2.2.3.1 Special calcination
2.2.3.2 Decreasing of the impurities
2.2.3.3 Production of amorphous hydroxides
2.2.3.4 Shaping
2.2.4 Specialty calcined aluminas
2.2.4.1 High temperature calcination
2.2.4.2 Application of mineralizers
2.2.4.3 Contaminants decreasing
2.2.4.4 Grinding

References

2.3 PRODUCTION OF ZEOLITE IN AJKA
2.3.1 Zeolites in the industry
2.3.1.1 General description of zeolites
2.3.1.2 Crystal structure
2.3.1.3 Zeolites as detergent builders
2.3.1.4 Zeolites and adsorbents
2.3.2 Production of zeolite in the alumina plant
2.3.2.1 An individual procedure connected with
the Bayer cycle
2.3.2.2 Production of zeolite detergent
2.3.2.3 Development of zeolite adsorbents
2.3.2.4 Other developments of SiO_2 based materials

References
2.4 PRODUCTION OF ALUMINIUM SULPHATE
 2.4.1 Areas of utilization 96
 2.4.2 Short review of aluminium sulphate manufacturing process 98
 2.4.2.1 Production of aluminium sulphate from aluminium ores 98
 2.4.2.2 Production of aluminium sulphate from alumina hydrate 100
 2.4.2.3 Technology of the aluminium sulphate plant unit of MOTIM 100
 2.4.3 Basic materials used 100
 2.4.3.1 Technical grade sulphuric acid 100
 2.4.3.2 Aluminium crihydroxide 101
 2.4.4 Review of technologies for manufacturing aluminium sulphate 101
References 102

2.5 DEVELOPMENT AND PRODUCTION OF NON-METALLURGICAL GRADE ALUMINAS IN HUNGARY 103
 2.5.1 The largest special alumina producer in Central-Eastern Europe - the ALOXID Ltd. 103
 2.5.2 The production and development activity of ALOXID Ltd. 105
 2.5.2.1 Activated aluminas (adsorbents, catalyst carriers) 105
 2.5.2.2 Calcined special aluminas and their further processed varieties 112
References 116

2.6 CERAMIC ALUMINAS AND THEIR CHARACTERISTICS 118
 2.6.1 Definition of ceramic aluminas, and their classification 118
 2.6.2 Field of application 118
 2.6.3 Typical properties 119
 2.6.4 Production processes 127

2.7 PRODUCTION OF SPECIAL OXIDE CERAMICS 129
 2.7.1 Special ceramics 129
 2.7.2 Alumina ceramics 130
 2.7.2.1 Method for production of high purity Al2O3 powder of submicron particle size 131
 2.7.2.2 Properties of DIAKOR alumina ceramics for different industrial applications 132
 2.7.2.3 Alumina bioceramics 135
 2.7.3 Outlook for development of alumina ceramics 137
 2.7.4 Zirconia toughened alumina ceramics (ZTA) 137
 2.7.4.1 Transformation toughening mechanisms 137
 2.7.4.2 Properties of our ZTA ceramics 138
 2.7.5 Transformation toughened zirconia ceramics 138
References 142
2.8 PLASMA MATERIALS FOR CERAMICS

2.8.1 Plasma state and types of plasmas
 2.8.1.1 Some behaviours of the plasma state
 2.8.1.2 Types of plasmas produced by electrical discharges

2.8.2 Apparatus

2.8.3 Non metallurgical, special aluminas
 2.8.3.1 Production of non-metallurgical alumina
 2.8.3.2 Production of non-metallurgical alumina by plasma technique.

References

2.9 VANADIUM PENTOXIDE PRODUCTION

2.9.1 Bauxite as the source of vanadium
2.9.2 Recovery of vanadium from bauxites
2.9.3 Processing of vanadium salt
2.9.4 Beneficiation
2.9.5 Dissolution of crystals
2.9.6 Purification of vanadate solutions
 2.9.6.1 Processes based on the removal of impurities
 2.9.6.2 Processes based on fixing vanadium
 2.9.6.3 Processes adopting ion exchange
 2.9.6.4 Electrochemical processes for the recovery of V2O5
2.9.7 Short review of the technology for
 V2O5-production in Magyaróvár (NOTIM)

References

2.10 GALLIUM RECOVERY FROM BAYER CYCLE

2.10.1 General review of gallium
2.10.2 Development of gallium production
2.10.3 Process technologies
 2.10.3.1 The aluminate liquor as basic material
 2.10.3.2 Amalgam cathode method
 2.10.3.3 Aluminium cementation process
2.10.4 Purification of gallium
2.10.5 Production of gallium(III)oxide

References
3 QUALITY CONTROL AND MATERIAL TESTING

3.1 GENERAL OVERVIEW OF THE TECHNIQUES OF QUALITY CONTROL IN THE FIELD OF SPECIAL PRODUCTS

3.1.1 Characteristics of the individual units of powders
 3.1.1.1 Summary of the characteristics of individual unit of powders further their investigation methods
 3.1.1.2 Atomic structure
 3.1.1.3 Morphology
 3.1.1.4 Chemical composition

3.1.2 Powder features
 3.1.2.1 Powder features and their investigation methods
 3.1.2.2 X-ray diffraction (XRD)
 3.1.2.3 Infrared spectroscopy
 3.1.2.4 Chemical analysis by X-ray fluorescence
 3.1.2.5 Atomic Absorption Spectrometry and Inductive Coupled Spectrometry
 3.1.2.6 Strength of particles
 3.1.2.7 Particle size measurements
 3.1.2.8 Specific surface area and porosity
 3.1.2.9 Chemical solubility
 3.1.2.10 Loss of ignition

3.1.3 Characterization of products - functional properties - made of powder

References

3.2 PHASE ANALYSIS OF THE TRANSITION ALUMINAS

3.2.1 Phases of the Al₂O₃ - H₂O system
 3.2.1.1 Crystal Structure
 3.2.1.2 Thermal Transformations

3.2.2. Phase Analysis
 3.2.2.1 Phase identification
 3.2.2.2 Quantitative phase composition
 3.2.2.3 X-Ray diffraction
 3.2.2.4 Differential Thermal Analysis
 3.2.2.5 Infrared Spectroscopy

References

3.3 MAJOR, MINOR AND TRACE ELEMENT ANALYSIS OF CO-PRODUCTS AND BY-PRODUCTS IN BAYER ALUMINA PRODUCTION BY CHEMICAL METHODS

3.3.1 The elemental composition of the co-products and by-products

3.3.2 The contaminating components in co-products and by-products
 3.3.2.1 The contaminating components in sodium aluminate liquors
 3.3.2.2 The contaminating components in water
 3.3.2.3 Determination of contaminating components of products

3.3.3 Determination of components by classical chemical methods in alumina products

3.3.4 Anions in the Bayer process determined by ion-chromatography methods

3.3.5 Quality assurance in analytical chemistry
3.4 X-RAY FLUORESCENCE SPECTROMETRY

3.4.1 X-ray fluorescence spectrometry
 3.4.1.1 Production of characteristic radiation
 3.4.1.2 The spectrometer

3.4.2 Quantitative analysis
 3.4.2.1 Sample preparation
 3.4.2.2 Methods of concentration determination
 3.4.2.3 Reliability of the results

References

3.5 MINOR AND TRACE ELEMENT ANALYSIS OF CO- AND BY-PRODUCTS IN BAYER ALUMINA PRODUCTION BY ATOMIC ABSORPTION SPECTROMETRY

3.5.1 Working principle of AAS units
3.5.2 Instrumentation
3.5.3 Sample preparation for AA-measurement
3.5.4 Methods of concentration determination
3.5.5 Sensitivity, detection limit and accuracy in AAS

References

3.6. ANALYTICAL SPECTROSCOPY

3.6.1. Excitation
3.6.2. Dispersion of the light
3.6.3. Detection
3.6.4. Data acquisition
3.6.5. Spectrometry in alumina plants
 3.6.5.1 Spectrography
 3.6.5.2. Optical Emission Spectrometry
 3.6.5.3. ICP optical emission spectrometry
3.6.6. Disturbing interferences
3.6.7. Calibration

References

3.7 SURFACE ANALYSIS AND MORPHOLOGICAL STUDIES OF SPECIAL PRODUCTS

3.7.1 Surface analysis of special products
3.7.2 Electron beam excited analytical methods
 3.7.2.1 EPMA
 3.7.2.2 AES
3.7.3 X-ray excited method: Photoelectron Spectroscopy (XPS)
3.7.4 Ion beam induced method: Secondary Ion Mass Spectrometry
3.7.5 Study of the morphological features of special products
 3.7.5.1 Study of the morphological features
 of ground aluminium trihydroxide
 3.7.5.2 Studying of the transition process of
 ATH by the effect of heat treatment
3.7.6 Studying the size and state of aggregation in case
 of fine-sized powder materials
3.7.7 Quantitative microstructural studies of ceramic materials

References
3.8 SURFACE AREA, PORE- AND GRAIN-SIZE OF BAYER ALUMINA CO- AND BY-PRODUCTS
3.8.1 Specific surface area 261
3.8.2 Porosity and distribution of pore volume 266
 3.8.2.1 Determination methods of pore-size distribution 267
 3.8.2.2 Determination of pore-size distribution by gas-adsorption 269
 3.8.2.3 Determination of pore distribution by mercury porosimetry 270
3.8.3 Grain-size distribution 272
 3.8.3.1 Sedimentation methods for determination of grain-size distribution 273
References 276

3.9 PRECISION OF TEST METHODS - DETERMINATION OF REPEATABILITY AND REPRODUCIBILITY OF TESTS
3.9.1 Definitions 280
3.9.2 Practical implications of the definition 280
3.9.3 Statistical model 280
3.9.4 Design of a precision experiment 281
3.9.5 Analysis of the data 282
3.9.6 Statistical analysis of results of an inter-laboratory experiment 282
3.9.7 Recommended practice for investigating outliers 282
3.9.8 Notation, definitions and basic formulas 283
 3.9.8.1 Original test results 283
 3.9.8.2 Measures of cell spread 283
 3.9.8.3 Cell averages for uniform split-level experiment 284
 3.9.8.4 Repeatability variance \(s_r^2 \) and between-laboratory variance \(s_L^2 \) 284
3.9.9 Maximum variance test of Cochran 284
3.9.10 Outlier test of Dixon 285
3.9.13 Establishing a functional relation between \(r \) (or \(R \)) and \(m \) 286
References 287
4 ESTABLISHMENT OF NEW CAPACITIES

4.1 SOME ASPECTS OF ENGINEERING IN A DEVELOPMENT PROJECT: A CASE STUDY

4.1.1 Preliminary considerations
4.1.2 Stages of a typical development project
4.1.3 Project formulation, promotion
4.1.4. Pre-investment studies
 4.1.4.1 Opportunity study, Pre-feasibility study
 4.1.4.2 Support (functional) studies
 4.1.4.3 Feasibility Study
4.1.5 Alternatives, optimization
4.1.6 Accuracy of cost estimates
4.1.7 Costs of the engineering
4.1.8. The project team
4.1.9. The professionals and their role in the design process
 4.1.9.1. Process engineer
 4.1.9.2. Mechanical engineer
 4.1.9.3. Civil engineer
 4.1.9.4. Electrical engineer
 4.1.9.5. Process control engineer
 4.1.9.6. Economist
4.1.10. Organizational aspects
4.1.11. The engineering company
4.1.12. A case study: Setting up of an aluminium sulphate plant
 4.1.12.1 Project background
 4.1.12.2. Preparation of the study; design part
 4.1.12.3. Financial and economic evaluation of the study

References

5 MANAGING OF INFORMATION

5.1 ABOUT INFORMATION MANAGEMENT
5.1.1 Importance of information management
5.1.2 Terms of information management
5.1.3 Tasks of information managing
5.1.4 An example: about alumina

Information on Firms involved in the Workshop
List of contributors
LIST OF FIGURES

<p>| Figure 1.1-1 | Alumina refining capacity by region | 6 |
| Figure 1.1-2 | Primary aluminium smelter capacity by region | 6 |
| Figure 1.1-3 | Distribution of alumina plant by size in “Western World” | 8 |
| Figure 1.1-4 | Non-metal grade alumina producing capacity by country in 1993 | 9 |
| Figure 1.1-5 | Alumina production costs | 11 |
| Figure 1.1-6 | Heat flow diagram | 16 |
| Figure 1.1-7 | Alumina quality and liquor productivity | 19 |
| Figure 1.1-8 | Bayer process with grafts of chemicals processes | 20 |
| Figure 1.2-1 | By- and co-products originating from or relating to the Bayer process | 26 |
| Figure 1.2-2 | Non-metallurgical use of aluminium trihydroxide (ATH) | 28 |
| Figure 1.2-3 | Specific surface area of ATH vs temperature | 33 |
| Figure 2.1-1 | Flame retardant use in USA in year 1982 and 1987 | 44 |
| Figure 2.1-2 | Characteristic curves of grinding | 46 |
| Figure 2.1-3 | Effect of grinding gas pressure and velocity on useful grinding work | 47 |
| Figure 2.1-4 | Air-jet mill | 48 |
| Figure 2.1-5 | Fine and coarse classifier | 49 |
| Figure 2.1-6 | Simplified scheme of ATH grinding plant | 51 |
| Figure 2.1-7 | Technological sketch of fine ATH production | 52 |
| Figure 2.1-8 | Grain size distribution of fine ATH produced by precipitation | 53 |
| Figure 2.2-1 | Connection between Bayer-cycle and special alumina technologies | 56 |
| Figure 2.2-2 | Classification of aluminium hydroxides | 57 |
| Figure 2.2-3 | Wet oxidation of organic compounds | 59 |
| Figure 2.2-4 | Process flow diagram of the liquor burning | 60 |
| Figure 2.2-5 | Cristalline phases precipitated at the different parameters of carbonization | 62 |
| Figure 2.2-6 | SEM image of ATH samples | 63 |
| Figure 2.2-7 | Inter-relationships of polymer, filler and mechanical stresses in composites | 64 |
| Figure 2.2-8 | Transformation sequence Al(OH)₃ ----> Al₂O₃ | 69 |
| Figure 2.2-9 | Properties of activated gibbsite | 70 |
| Figure 2.2-10 | X-ray diffractograms transitional cristalline | 71 |
| Figure 2.2-11 | Particle size vs. temperature and holding time at carbonization | 75 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-12</td>
<td>Specialty calcined alumina application requirements</td>
</tr>
<tr>
<td>2.2-13</td>
<td>Quality control items of alumina for ceramics</td>
</tr>
<tr>
<td>2.2-14</td>
<td>Relationship between the size of ultimate crystals of alumina and pressed bulk density of ungrounded powder</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Two dimensional aluminosilicate framework</td>
</tr>
<tr>
<td>2.3-2</td>
<td>Structure of zeolite A and X</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Hardness removal by Zeolite</td>
</tr>
<tr>
<td>2.3-4</td>
<td>Calcium depletion rate for major builders</td>
</tr>
<tr>
<td>2.3-5</td>
<td>pH = 9.4, room temperature, 0.06 % builder</td>
</tr>
<tr>
<td>2.3-6</td>
<td>Water vapour adsorption at 25 °C</td>
</tr>
<tr>
<td>2.3-7</td>
<td>Production of zeolite NaA powder</td>
</tr>
<tr>
<td>2.3-8</td>
<td>Outline of zeolite producing process</td>
</tr>
<tr>
<td>2.3-9</td>
<td>Direction of development silica based materials</td>
</tr>
<tr>
<td>2.5-1</td>
<td>Activated and calcined special aluminas</td>
</tr>
<tr>
<td>2.5-2</td>
<td>Catalyst carrier process flow diagram</td>
</tr>
<tr>
<td>2.5-3</td>
<td>X-ray powder diffraction pattern of pseudoboehmite</td>
</tr>
<tr>
<td>2.5-4</td>
<td>Morphology pseudoboehmite tested SEM</td>
</tr>
<tr>
<td>2.5-5</td>
<td>Granulometric properties of the ground alumina</td>
</tr>
<tr>
<td>2.5-6</td>
<td>The steps of ceramic technology</td>
</tr>
<tr>
<td>2.6-1</td>
<td>β-Al₂O₃ phase in ceramic aluminas</td>
</tr>
<tr>
<td>2.6-2</td>
<td>Intensity of β-Al₂O₃ versus total Na₂O</td>
</tr>
<tr>
<td>2.6-3</td>
<td>Electric conductivity versus Na₂O</td>
</tr>
<tr>
<td>2.6-4</td>
<td>Morphology of the ceramic alumina tested by SEM</td>
</tr>
<tr>
<td>2.6-5</td>
<td>Morphology of the ceramic alumina tested by SEM</td>
</tr>
<tr>
<td>2.6-6</td>
<td>Morphology of the ceramic alumina tested by SEM</td>
</tr>
<tr>
<td>2.6-7</td>
<td>Specific surface versus grinding time</td>
</tr>
<tr>
<td>2.6-8</td>
<td>The d_{50} value versus grinding method</td>
</tr>
<tr>
<td>2.6-9</td>
<td>Ceramic properties vs sintering temperature</td>
</tr>
<tr>
<td>2.6-10</td>
<td>Ceramic properties vs sintering temperature</td>
</tr>
<tr>
<td>2.7-1</td>
<td>Technological scheme of DIAKOR ceramics production</td>
</tr>
<tr>
<td>2.7-2</td>
<td>High strength alumina ceramic parts for different industrial applications and their typical microstructure (SEM image)</td>
</tr>
<tr>
<td>2.7-3</td>
<td>Transparent alumina ceramic parts and their typical microstructure (SEM image)</td>
</tr>
<tr>
<td>2.7-4</td>
<td>DIAKOR bioceramics</td>
</tr>
<tr>
<td>2.7-5</td>
<td>Microstructure (SEM images) of 12Ce-TZP and 12Ce-TZP + 5 % Al2O3 ceramics sintered</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>2.7-6</td>
<td>X-ray diffraction patterns of 1ZCe-TZP and 1ZCe-TZP + 10% Al2O3 ceramics</td>
</tr>
<tr>
<td>2.7-7</td>
<td>CID-ed sintered or injection molded-sintered Ce-TZP-Al2O3 ceramics</td>
</tr>
<tr>
<td>2.8-1</td>
<td>The behaviour of the plasma torch</td>
</tr>
<tr>
<td>2.8-2</td>
<td>Debye radius of screening</td>
</tr>
<tr>
<td>2.8-3</td>
<td>View of the behaviour of ions of matter at high temperatures</td>
</tr>
<tr>
<td>2.8-4</td>
<td>Heat content of monoatomic and diatomic gases</td>
</tr>
<tr>
<td>2.8-5</td>
<td>Sketch drawing of the DC plasma equipment and the attached reactor</td>
</tr>
<tr>
<td>2.8-6</td>
<td>Flowsheet of RF-plasma equipment</td>
</tr>
<tr>
<td>2.8-7</td>
<td>The reaction zone of RF induction plasma</td>
</tr>
<tr>
<td>2.8-8</td>
<td>SEM images of Al2O3 powder</td>
</tr>
<tr>
<td>2.8-9</td>
<td>SEM images of Al2O3 powder</td>
</tr>
<tr>
<td>2.10-1</td>
<td>Capacity of gallium cell in function of liquor concentration and salt level</td>
</tr>
<tr>
<td>2.10-2</td>
<td>Electrolytic cell</td>
</tr>
<tr>
<td>2.10-3</td>
<td>Refining process of gallium</td>
</tr>
<tr>
<td>3.2-1</td>
<td>X-ray diffractogram of gibbsite and bayerite</td>
</tr>
<tr>
<td>3.2-2</td>
<td>X-ray diffractogram of nordstrandite</td>
</tr>
<tr>
<td>3.2-3</td>
<td>X-ray diffractogram of pseudoboehmite and boehmite</td>
</tr>
<tr>
<td>3.2-4</td>
<td>X-ray diffractogram of diasporer</td>
</tr>
<tr>
<td>3.2-5</td>
<td>X-ray diffractogram of gamma- and eta-alumina</td>
</tr>
<tr>
<td>3.2-6</td>
<td>X-ray diffractogram of chi-alumina</td>
</tr>
<tr>
<td>3.2-7</td>
<td>X-ray diffractogram of delta- and theta-alumina</td>
</tr>
<tr>
<td>3.2-8</td>
<td>X-ray diffractogram of alpha-alumina</td>
</tr>
<tr>
<td>3.6-1</td>
<td>Meinhard nebuliser</td>
</tr>
<tr>
<td>3.6-2</td>
<td>Babington grooved nebuliser</td>
</tr>
<tr>
<td>3.6-3</td>
<td>Hydride generator</td>
</tr>
<tr>
<td>3.6-4</td>
<td>ICP torch</td>
</tr>
<tr>
<td>3.6-5</td>
<td>Producing Chemical Information</td>
</tr>
<tr>
<td>3.6-6</td>
<td>Photoelectron multiplier tube</td>
</tr>
<tr>
<td>3.6-7</td>
<td>Optical system of a spectrometer</td>
</tr>
<tr>
<td>3.7-1</td>
<td>Comparison of typical lateral and depth resolution ranges of the most</td>
</tr>
<tr>
<td></td>
<td>important surface and thin film analysis</td>
</tr>
<tr>
<td>3.7-2</td>
<td>The interaction of the incident electrons with atomic level</td>
</tr>
<tr>
<td>3.7-3</td>
<td>Most prominent Auger transitions observed with atomic levels</td>
</tr>
<tr>
<td>3.7-4</td>
<td>Depth composition profil of Au, Cr and Ti metallization system on Al2O3</td>
</tr>
<tr>
<td>3.7-5</td>
<td>The physical bases of ESCA, XPS</td>
</tr>
<tr>
<td>3.7-6</td>
<td>The most prominent process going on in XPS</td>
</tr>
<tr>
<td>3.7-7</td>
<td>Scanning electron micrographs</td>
</tr>
<tr>
<td>Figure 3.7-8</td>
<td>High resolution electron micrographs</td>
</tr>
<tr>
<td>Figure 3.7-9</td>
<td>Scanning electron micrographs of aluminas of ceramic</td>
</tr>
<tr>
<td>Figure 3.7-10</td>
<td>Scanning electron micrographs</td>
</tr>
<tr>
<td>Figure 3.7-11</td>
<td>Illustration of the geodesic diameter D</td>
</tr>
<tr>
<td>Figure 3.7-12</td>
<td>Mean shape factor during sintering as a function of time</td>
</tr>
<tr>
<td>Figure 3.8-1</td>
<td>Nitrogen adsorption isotherm of Al$_2$O$_3$</td>
</tr>
<tr>
<td>Figure 3.8-2</td>
<td>Pore-size distribution function</td>
</tr>
<tr>
<td>Figure 3.8-3</td>
<td>Nitrogen adsorption and desorption isotherm</td>
</tr>
<tr>
<td>Figure 3.8-4</td>
<td>Cumulative por distribution curve of Bayer alumina</td>
</tr>
<tr>
<td>Figure 3.8-5</td>
<td>Cumulative pore distribution curve of plant alumina</td>
</tr>
<tr>
<td>Figure 3.8-6</td>
<td>Determination of the grain-size distribution</td>
</tr>
<tr>
<td>Figure 3.8-7</td>
<td>Grain-size distribution of high purity ceramic aluminas</td>
</tr>
<tr>
<td>Figure 4.1-1</td>
<td>Phases of investment activity</td>
</tr>
<tr>
<td>Figure 4.1-2</td>
<td>Project time schedule</td>
</tr>
<tr>
<td>Figure 4.1-3</td>
<td>Conceptual process flow-sheet, aluminium sulphate production from bauxite</td>
</tr>
<tr>
<td>Figure 4.1-4</td>
<td>Conceptual process flow-sheet, aluminium sulphate production from ATH</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<p>| Table 1.1-1 | Alumina plant closures 1980-1988 | 7 |
|Table 1.1-2 | Major instances of alumina capacity increases 1985-1989 (kty) [4] | 8 |
|Table 1.1-3 | Major expansions of alumina capacity projected to 1995 (kty) | 12 |
|Table 1.1-4 | Alumina refining capacity by region total world 1985-1995 (ktpy) | 13 |
|Table 1.1-5 | Typical specifications for grades of bauxite | 15 |
|Table 1.1-6 | Typical level of impurities in the metal grade alumina | 18 |
|Table 1.1-7 | Physical properties of a typical sandy type alumina compared with a fluory type | 13 |
|Table 1.2-1 | ATH containing polymers | 30 |
|Table 1.2-2 | Characteristics data of typical ground products | 31 |
|Table 2.1-1 | Product manufactured by granulation | 53 |
|Table 2.1-2 | Characteristics of ALOLT products | 54 |
|Table 2.2-1 | Chemical and physical properties of smelting grade alumina (sandy type) | 55 |
|Table 2.2-2 | Chemical an physical properties of special alumina hydrate products | 58 |
|Table 2.2-3 | Analyses of standard particle size ATH samples (Samples A, B and C) | 62 |
|Table 2.2-4 | Typical Commercial Silane Coupling Agents | 65 |
|Table 2.2-5 | Chemical and physical properties of activated aluminas | 68 |
|Table 2.2-6 | Conditions of treatment | 74 |
|Table 2.2-7 | Chemical and physical properties of specialty calcined aluminas | 77 |
|Table 2.3-1 | Characteristics of ZEOLON-P | 92 |
|Table 2.3-2 | Characteristics of ZEOLON-G | 94 |
|Table 2.4-1 | Consumption of indigenous aluminium sulphate by industry branches 1990 | 96 |
|Table 2.4-2 | Quality stipulations for aluminium sulphate of industrial use | 97 |
|Table 2.4-3 | Quality stipulations for aluminium sulphate for the use of water purification | 98 |
|Table 2.5-1 | Activated aluminas under production and development | 106 |
|Table 2.5-2 | Characteristics of the AG adsorbent used in alkylation technologies | 108 |
|Table 2.5-3 | Specific properties of pseudoboehmite | 111 |
|Table 2.5-4 | Properties of catalyst carriers from Almásfűzítő pseudoboehmite | 112 |
|Table 2.5-5 | Special calcined alumina produced by Almásfűzítő | 113 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5-6</td>
<td>Characteristics of the high alumina grinding ball</td>
</tr>
<tr>
<td>2.5-7</td>
<td>Abrasive and polishing aluminas of ALOXID Ltd.</td>
</tr>
<tr>
<td>2.7-1</td>
<td>Properties of several grades alumina ceramics</td>
</tr>
<tr>
<td>2.7-2</td>
<td>Chemical and mechanic properties of high-purity alumina ceramics</td>
</tr>
<tr>
<td>2.7-3</td>
<td>Main properties of our sintered TZP ceramics</td>
</tr>
<tr>
<td>2.8-1</td>
<td>The operational parameters and the feature of alumina synthesized in DC plasma</td>
</tr>
<tr>
<td>2.8-2</td>
<td>Operational parameters and the feature of the alumina produced in RF plasma</td>
</tr>
<tr>
<td>2.9-1</td>
<td>Composition of vanadium salt</td>
</tr>
<tr>
<td>2.9-2</td>
<td>Trade quality of the laminar vanadium pentoxide</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Characteristics of the individual units of the powders</td>
</tr>
<tr>
<td>3.1-2</td>
<td>Features of the powders (aerosol or gel)</td>
</tr>
<tr>
<td>3.1-3</td>
<td>Sensitivity (ng/ml) for selected elements</td>
</tr>
<tr>
<td>3.1-4</td>
<td>Comparison of particle size methods for alumina and hydrate analysis</td>
</tr>
<tr>
<td>3.3-1</td>
<td>Contaminating components in alumina</td>
</tr>
<tr>
<td>3.3-2</td>
<td>Special co-product produced in plants of HUNGALU Rt.</td>
</tr>
<tr>
<td>3.3-3</td>
<td>By-product produced in plants of HUNGALU Rt.</td>
</tr>
<tr>
<td>3.3-4</td>
<td>Co-product produced in plants of HUNGALU Rt.</td>
</tr>
<tr>
<td>3.3-5</td>
<td>Advantages and disadvantages of some instrumental methods for routine trace element analysis</td>
</tr>
<tr>
<td>3.3-6</td>
<td>Methods for the determination of the contaminating components of alumina</td>
</tr>
<tr>
<td>3.3-7</td>
<td>ISO standard methods used for analysis of alumina</td>
</tr>
<tr>
<td>3.4-1</td>
<td>Sample preparation</td>
</tr>
<tr>
<td>3.4-2</td>
<td>Characteristics of the XRF-tests for alumina and aluminium hydroxide</td>
</tr>
<tr>
<td>3.4-3</td>
<td>Characteristics of the XRF-tests for zeolite</td>
</tr>
<tr>
<td>3.6-1</td>
<td>Excitation modes for different needs</td>
</tr>
<tr>
<td>3.6-2</td>
<td>The pair of spectral lines for analysing of bauxite</td>
</tr>
<tr>
<td>3.6-3</td>
<td>The pair of spectral lines for analysing of alumina</td>
</tr>
<tr>
<td>3.7-1</td>
<td>Survey of the most distributed compositional analysis methods based on physical phenomena</td>
</tr>
<tr>
<td>3.7-2</td>
<td>Comparison between WDX and EDA techniques</td>
</tr>
<tr>
<td>3.7-3</td>
<td>Line energies of aluminium compounds</td>
</tr>
<tr>
<td>3.7-4</td>
<td>Binding energies of aluminium, oxygen, sodium and fluorine</td>
</tr>
<tr>
<td>3.8-1</td>
<td>Methods for the determination of the specific surface area</td>
</tr>
<tr>
<td>4.1-1</td>
<td>Quality of the raw materials</td>
</tr>
<tr>
<td>4.1-2</td>
<td>Quality of the product</td>
</tr>
<tr>
<td>Table 4.1-3</td>
<td>Material consumption of the production of aluminium sulphate</td>
</tr>
<tr>
<td>Table 4.1-4</td>
<td>Specific consumption</td>
</tr>
<tr>
<td>Table 4.1-5</td>
<td>Main equipment list</td>
</tr>
<tr>
<td>Table 4.1-6</td>
<td>Investment costs</td>
</tr>
<tr>
<td>Table 4.1-7</td>
<td>Manpower</td>
</tr>
<tr>
<td>Table 4.1-8</td>
<td>Production cost and profit</td>
</tr>
<tr>
<td>Table 4.1-9</td>
<td>Cash flow Variant: aluminium sulphate production from bauxite</td>
</tr>
<tr>
<td>Table 4.1-10</td>
<td>Cash flow Variant: aluminium sulphate production from hydrate</td>
</tr>
<tr>
<td>Table 5.1-1</td>
<td>Leading Databanks</td>
</tr>
<tr>
<td>Table 5.1-2</td>
<td>Possibilities of the most useful CD-ROMs</td>
</tr>
<tr>
<td>Table 5.1-3</td>
<td>Activities in databases</td>
</tr>
<tr>
<td>Table 5.1-4</td>
<td>Search in DIALOG</td>
</tr>
<tr>
<td>Table 5.1-5</td>
<td>Production of alumina</td>
</tr>
<tr>
<td>Table 5.1-7</td>
<td>Electronics and optoelectronics</td>
</tr>
</tbody>
</table>
CHAPTER 1

APPLICATIONS AND DEVELOPMENT OF PRODUCTS CONTAINING ALUMINA AND/OR ALUMINIUM TRIHIDROXIDE
1.1 MAIN TRENDS OF THE FURTHER DEVELOPMENT OF THE ALUMINA PRODUCTION: GEOGRAPHICAL AND PRODUCT RESTRUCTURING

K. Solymár

After some very attractive years of the world aluminium industry characterized by extremely good market situation for aluminium and alumina, great efforts are required again in order to maintain the profitability of the metal grade alumina production, especially relating to the alumina refineries of smaller capacity and located far from the bauxite deposits.

The main ideas of the keynote speech of Mr Jacques Bougie (ALCAN) held at the Light Metals Luncheon in Anaheim, USA in February 1990 are worldwide actual for the whole verticum of the aluminium industry:

"... what I regard as the four key issues: better management of our manufacturing operations, the development of new products and markets, rising environmental expectations and, last but not least, recycling."

As far as the main tasks of the European aluminium industry are concerned, Mr. Th. M. Tschopp (EAA Chairman and Executive Vice-president) emphasized the following [1]:

1. "We must optimize and speed up technical development. We must increase the quality of our products, must create more products designed for customers needs, must modernize our plants and intensify the search for new materials.

2. We must optimize the economics of our businesses. We must concentrate our investments accordingly and be prepared for new partnerships that give us strength under new market conditions such as the "United Europe."

All these mentioned points of view are referring to the alumina production, too. The main trends of the worldwide development of Bayer process are nowadays the reduction of the production costs of alumina and the increase of the efficiency of the equipment [2].

The metal grade alumina production is determined by the large alumina plants located close to the huge bauxite deposits. Consequently, rearrangement of aluminium industry is already in course, the new capacities are built mainly in Australia, Brazil, India, Venezuela and China where raw materials, energy and market are simultaneously available. This is the geographical restructuring of the world alumina production.
The importance of the production of chemical grade alumina and valuable by-products, e.g. zeolites and gallium, is increasing, first of all in the smaller alumina refineries. This product restructuring between the metal grade and chemical grade alumina production is the most significant actual trend to remain competitive with the large capacity refineries focused on metal grade alumina production.

It should be mentioned, however, that the production of co-products and by products of the Bayer alumina production can be also more economic when it is combined with the economic production of metal grade alumina, that is low-price hydrate, alumina and process liquor is available for further special manufacturing.

Furthermore, sometimes the erection of smaller capacities of aluminium-hydroxide/alumina plants can also be justified in order to produce mostly or only more valuable special products, first of all where the market demand is existing already.

1.1.1 Geographical restructuring of the world alumina industry

The geographical restructuring of the primary world aluminium industry can be evaluated by studying the changing alumina refinery and aluminium smelter capacities (including both the metal-grade and non-metal grade alumina production) in the function of time.

Furthermore, the future trends of the territorial development of the world alumina industry can be forecast by means of the comparative evaluation of alumina production potential and costs by region and by countries.

1.1.1.1 Changing of the alumina refining and smelter capacities by region

The already mentioned geographical restructuring of the world aluminium industry can be studied by means of the changing of the alumina refining and smelter capacities by region in time. The data published by Mr. R. R. Kalpoe [6] are plotted in Figure 1.11 and Figure 1.1-2, respectively.

It can be seen that the most attractive increase both in alumina refining and smelter capacities in Latin America (Brazil and Venezuela) and China is expected. The comparison of the smelter capacity with the equivalent alumina refinery capacity by region in Figure 1.1-2 indicate the world trade of the metallurgical grade alumina.
Figure 1.1-1
Alumina refining capacity by region [3]

Figure 1.1-2
Primary aluminium smelter capacity by region [3]
The alumina plant closures 1980-88 are summarized in Table 1.1-1 [3].

Table 1.1-1

<table>
<thead>
<tr>
<th>Region</th>
<th>Country/refinery</th>
<th>Closed capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORT AMERICA</td>
<td>USA, Mobile (Alcoa)</td>
<td>800 (1982)</td>
</tr>
<tr>
<td></td>
<td>USA, Baton Rouge (Kaiser)</td>
<td>730 (1983)</td>
</tr>
<tr>
<td></td>
<td>USA, Hurricane Creek (Reynolds)</td>
<td>650 (1983)</td>
</tr>
<tr>
<td></td>
<td>USA, Burnside (Ormet)</td>
<td>635 (1985)(1)</td>
</tr>
<tr>
<td></td>
<td>US Virgin Island (M.Marietta)</td>
<td>550 (1985)</td>
</tr>
<tr>
<td>EUROPE</td>
<td>Italy, Porto Marghera</td>
<td>200 (1981)</td>
</tr>
<tr>
<td></td>
<td>Yugoslavia, Obrovac</td>
<td>300 (1982)</td>
</tr>
<tr>
<td></td>
<td>France, Salindres (Pechiney)</td>
<td>270 (1984)</td>
</tr>
<tr>
<td></td>
<td>W.Germany, Lünen (VAW)</td>
<td>450 (1987)</td>
</tr>
<tr>
<td></td>
<td>W.Germany, Ludwigshafen (ALCOA)</td>
<td>140 (1988)</td>
</tr>
<tr>
<td>CARIBBEAN</td>
<td>Guyana, Linden (Bidco)</td>
<td>300 (1982)(2)</td>
</tr>
<tr>
<td></td>
<td>Jamaica, Alpart (Kaiser, Reynolds)</td>
<td>1180 (1985)(3)</td>
</tr>
<tr>
<td>ASIA</td>
<td>Taiwan, Talx</td>
<td>140 (1981)</td>
</tr>
<tr>
<td></td>
<td>Japan, Yokohama (Showa)</td>
<td>200 (1983)</td>
</tr>
<tr>
<td></td>
<td>Japan, Kikumoto (Sumitomo)</td>
<td>740 (1984)</td>
</tr>
<tr>
<td></td>
<td>Japan, Wakamatsu (Mitsui)</td>
<td>300 (1985)</td>
</tr>
<tr>
<td></td>
<td>Japan, Tomakomai (NLM)</td>
<td>360 (1987)</td>
</tr>
<tr>
<td>TOTAL CLOSURES</td>
<td></td>
<td>7945 kgt</td>
</tr>
</tbody>
</table>

(1) Recommissioned in October 1988.
(2) To be reopened in the short to medium term.
(3) Reopened early 1989.

SOURCE: IBA SECRETARIAT

Major increases of alumina capacity can be seen in Table 1.1-2 based on the data published by D. Wilks, IBA secretariat [4].

According to G. Bárddossy [5] the world bauxite reserves can cover the needs of humanity for at least 250 to 300 years because the total amount of the known bauxite reserves amounts to 38.8 billion tons and additional 23 to 30 billion tons of bauxite resources are indicated. Fortunately, 81% of the global reserves occur in surface deposits and further 14 % can be mined in open pits after stripping of the overburden. In consequence, the perspectives of the underground mining are very limited.
Table 1.1-2
Major instances of alumina capacity increases 1985-1989 (kt/a) [4]

<table>
<thead>
<tr>
<th>Country</th>
<th>Refinery</th>
<th>Capacity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Ormet</td>
<td>565</td>
<td>Re-start</td>
</tr>
<tr>
<td>Australia</td>
<td>Gove</td>
<td>250</td>
<td>Expansion</td>
</tr>
<tr>
<td>Australia</td>
<td>Wagerup</td>
<td>200</td>
<td>Expansion</td>
</tr>
<tr>
<td>Australia</td>
<td>QAL</td>
<td>160</td>
<td>Expansion</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Alpart</td>
<td>600</td>
<td>Re-start</td>
</tr>
<tr>
<td>Jamaica</td>
<td>CAP</td>
<td>100</td>
<td>Expansion</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Interalumina</td>
<td>250</td>
<td>Expansion</td>
</tr>
<tr>
<td>Brazil</td>
<td>Sao Luis</td>
<td>200</td>
<td>Expansion</td>
</tr>
<tr>
<td>Suriname</td>
<td>Paranam</td>
<td>250</td>
<td>Expansion</td>
</tr>
<tr>
<td>India</td>
<td>Nalco</td>
<td>800</td>
<td>New Refinery</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The distribution of alumina capacity of the "Western World" by size in 1970 and 1988 is compared in Figure 1.1-3. It can be seen, that 50% of the total alumina production in 1988 was made by the refineries of above 1000 kt/a capacity and that of 14% only in the relatively small refineries (under 500 kt/a capacity). The plant capacity is a determining factor in the competitiveness.
The expected non-metal grade alumina producing capacity by country in 1993 is plotted in Figure 1.1-4.

![Alumina Production Capacity by Country in 1993](image)

Figure 1.1-4
Non-metal grade alumina producing capacity by country in 1993[3]

Naturally, the developed countries with significant chemical industry are determining producers in this field. It is remarkable that the share of Europe amounts to 30% in chemical grade alumina production of the world in comparison with 18.9% share in the world production capacity of the metallurgical grade one. The total world production of only 3 million t/a gives a good chance to increase significantly the amount of the special products in the next future already.

It is to be mentioned, however, that a relatively rash increase of the demand for alumina-hydrate (as filling and fire retarding material), aluminium-sulphate, some kinds of ceramic aluminas can be expected in the developing countries, too. Considering the limited transportability of these products from economic points of view and the relatively good conditions for local production in the existing or future alumina refineries, the domestic manufacturing of such products can be highly recommended in the developing countries in the next future.

1.1.1.2 Alumina production potential and costs

In order to see a realistic picture concerning the future trends of the world alumina industry the alumina production potential
and costs should be studied and evaluated very thoroughly on a comparative basis. For this purpose the basic data of the study prepared by D. R. Wilburn and D. A. Buckingham [6] is available. In this report the costs for alumina refining for selected MEC (market economy country) countries have been subdivided into operating costs (i.e. labour, supplies and energy), overhead (averaged at 15 percent of operating cost), transportation, recovery of capital, taxes and royalties at 0 and 15 percent discounted cash flow rate of returns (DCFRORs) and return on investment /at 15 % DCFROR/). At the analysis refineries were assumed to operate at full capacity for a 30 year period. All costs were considered in January 1989 USD/t of alumina on a weighted average basis. The annual production was calculated on the basis of the total recovered alumina divided by life of refinery. The potential total production of alumina was approximately 916 million tonnes, from MEC operations.

The results are summarized in Figure 1.1-5. The estimated weighted-average net operating cost for all refineries evaluated (including Canada, France, Greece, Guinea, Guyana, Ireland, Japan, Spain, Suriname, Turkey and Venezuela, too) is 158 USD/t of alumina, the total production costs 182.50 USD/t at a 0 percent DCFROR and 220.80 USD/t at 15 percent.

It can be stated that not only Australia and USA, but also Brazil, Venezuela and Jamaica (and some other developing countries) have very good potential for economic production of metal grade alumina. The non-metal grade alumina production combined with the metal-grade one can increase the profitability and competitiveness of the given alumina refineries even more.

It is clear, that the European alumina refineries can not be competitive with the Brazilian and giant Australian or Venezuelan refineries in long term, especially by processing costly imported bauxite. The only favourable condition in Europe is the existing demand on metal grade alumina of the smelters in the vicinity. This fact makes possible the further operation of some refineries at least in short or medium term. The main task is here to increase the efficiency by means of technical development with very effective and low-cost investment and to produce more and more valuable special products.
In agreement with the above cost analysis the major expansions of alumina capacity projected to 1995 are given in Table 1.1-3 [4].

It can be seen that beside Brazil, Australia, Jamaica and Venezuela only China, India, US Virgin Island and Greece can be found on the list. All countries mentioned in Table 1.1-3 have (mostly high grade) local bauxite and/or extending domestic market (e.g. China and India).
Table 1.1-3
Major expansions of alumina capacity projected to 1995 (kty) [4]

<table>
<thead>
<tr>
<th>Country</th>
<th>Refinery</th>
<th>Capacity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Alunorte</td>
<td>1.100</td>
<td>Greenfield</td>
</tr>
<tr>
<td>Greece</td>
<td>Elva</td>
<td>600</td>
<td>Greenfield</td>
</tr>
<tr>
<td>China</td>
<td>Heijin/Shanxi</td>
<td>650</td>
<td>Greenfield</td>
</tr>
<tr>
<td>China</td>
<td>Zheng Zhou/Henan</td>
<td>250</td>
<td>Greenfield</td>
</tr>
<tr>
<td>China</td>
<td>Pingguo/Guanxi/Zhuang</td>
<td>300</td>
<td>Greenfield</td>
</tr>
<tr>
<td>Jamaica</td>
<td>CAW</td>
<td>200</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Alpart</td>
<td>580 *</td>
<td>Re-start</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Alpart</td>
<td>320</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Interalumina</td>
<td>600</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Australia</td>
<td>Gove</td>
<td>150</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Australia</td>
<td>QAL</td>
<td>300</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Australia</td>
<td>Wagerup</td>
<td>650</td>
<td>Brownfield</td>
</tr>
<tr>
<td>Australia</td>
<td>USSR/Comalco</td>
<td>1.000</td>
<td>Greenfield</td>
</tr>
<tr>
<td>Australia</td>
<td>Worsley</td>
<td>500</td>
<td>Brownfield</td>
</tr>
<tr>
<td>US Virgin</td>
<td>Vialco</td>
<td>640 *</td>
<td>Re-start</td>
</tr>
<tr>
<td>India</td>
<td>Nalco</td>
<td>200</td>
<td>Brownfield</td>
</tr>
</tbody>
</table>

TOTAL: 8.040

* Capacity expected to come on stream before 1992.

The changing of the world alumina refining capacity between 1985 and 1995 is given in Table 1.1-4 [4].

Although the expected increase of the alumina capacity between 1989 and 1995 seems to be more or less overestimated, the further restructuring of the alumina industry is evident and as a consequence further closures of the highest cost (mostly small and old) refineries (first of all in Europe in the former CPE countries) can be forecast.

It should be mentioned here that sometimes a relatively small special alumina-hydrate/alumina oriented refinery can also be competitive. The first precondition is the availability of a high grade low cost bauxite which can be processed at a low cost (low demand on energy and caustic soda), that is gibbsitic (low temperature digestion) and low reactive silica bauxite is preferred for this purpose.
The increasing importance of the secondary aluminium industry should also be emphasized. This industry is becoming more and more important for the metal supply [7]. The recycled proportion of aluminium is about 32 per cent in world average nowadays. Considering the 12 years of average life time of aluminium containing products, a significant increase of this recycled proportion is very realistic in the next future and a well organized collecting and recycling system would be one of the most effective field for cooperation among the related countries. In this connection it has to be mentioned that the remelting of scrap requires only 5% of energy used for the extraction of primary aluminium from alumina [8].

Naturally, the increasing amount of the secondary, recycled aluminium decreases the demand for the primary metal and metal-grade alumina. In light of this trend the less economic alumina refineries should be closed step by step in the future, especially in Europe, in connection with the mentioned geographical restructuring of the world alumina/aluminium industry.
1.1.2. Technical development of the metal grade alumina production

The alumina production can be characterized as a material and energy-intensive process with considerable investment requirement. The basic trends of the development of the Bayer process are nowadays the reduction of the production costs of alumina, especially that of determining basic material and energy costs, furthermore the increasing of the efficiency of the equipment, [2] based on the cost-analysis of the alumina production.

1.1.2.1 Material saving

Costs of the bauxite, caustic soda and lime reach 40-50% of the total production costs. Price of bauxite and transportation is the decisive factor in plants processing imported bauxite.

The specific bauxite consumption to produce 1t of alumina is depending on the digestion yield of alumina and on the secondary losses determined by the autoprecipitation, the dissolved losses with red mud and the dust losses at calcination.

The means of the reduction of the alumina losses are therefore:

- elimination of the undigested losses (with high temperature tube digestion and with catalytic additives) [9...13]
- reduction of the autoprecipitation
- decrease of the dissolved losses (with higher solid concentrations in the underflow of the thickeners)
- decrease of the dust-formation at the calcining (with the production of coarser alumina).

The typical specifications for different grades of bauxite according to the consumers are given in Table 1.1-5 as published by Sehneke and Plunkert, US. Bureau of Mines [14].

The maximum value of SiO₂ in this Table is as high as 3.0 per cent only, however, this limit can not be assured in fact in a lot of alumina refineries.

Nevertheless, the processing of low-grade, high-silica bauxite can not be economic, first of all due to the costly caustic soda consumption.
Table 1.1-5
Typical specifications for grades of bauxite [14]

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Metal grade (dried Jamaica type)</th>
<th>Refractory grade (calcined)</th>
<th>Abrasive grade (calcined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ min.</td>
<td>47.0</td>
<td>86.5</td>
<td>83.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>22.0</td>
<td>2.5</td>
<td>8.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.0</td>
<td>3.75</td>
<td>3.0-4.5</td>
</tr>
<tr>
<td>K₂O+Na₂O</td>
<td>NS</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>MgO+CaO</td>
<td>NS</td>
<td>0.3</td>
<td>NS</td>
</tr>
<tr>
<td>CaO</td>
<td>NS</td>
<td>NS</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>NS</td>
<td>NS</td>
<td>0.4</td>
</tr>
<tr>
<td>MnO₂+Cr₂O₅+V₂O₅</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.5</td>
<td>NS</td>
<td>0.5</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>NS</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

NS No specification

The specific consumption of caustic soda varies from 0.032 t NaOH/t alumina for Boké type bauxite to 0.093 for Weipa bauxite and even higher for some others. [15] The alumina industry consumes 7% of the world production of caustic soda.

The quantity of caustic soda circulating within the Bayer cycle amounts to about 1 t/t alumina produced. At a world production level of 40 million t/a alumina, the same amount of NaOH can be found circulating in alumina refineries. The silica neutralization (formation of Na-Al-hydrosilicates) requires 75% and the treatment of oxalic acid about 10% of the total caustic soda consumption. The caustic soda spot prices reached 600 USD/tonne in 1988-89 and the current level is USD 300-350. Furthermore no significant reduction is expected even in medium term. Therefore, the reduction of caustic soda losses (regeneration by causticization) by means of lime chemistry becomes more and more economic and actual all over the world (not only for the alumina refineries processing high silica bauxite) [12, 13].

The application (economy) of the lime chemistry is determined by the operational and technological aspects on the one hand and the price relations between NaOH and lime on the other hand.

1.1.2.2 Energy saving

The energy audit is the base of the conservation program, therefore material and energy balances are to be elaborated. It is advised to deal with the alumina hydrate production and the calcination of the hydrate separately. The heat flow diagram of the production of alumina hydrate by high temperature digestion Bayer process plotted by Lang et al. [18] is shown in Figure 1.1-6. In this Figure the values of the radiation heat losses (signed by the numbers from 1 to 7) and the waste heat flows (signed by
the numbers from 8 to 10) of an alumina plant with a specific heat consumption of 8500 MJ/t of alumina for the alumina hydrate cycle are given, as well. The greatest waste heat occurs with the discharge of cooling water from the condenser in the evaporation plant. This hot well waste heat is in our example 2900 MJ/t of alumina (in Figure 1.1-6 signed by No. 10). This enormous waste heat can be eliminated by means of the evaporationless technology.

Figure 1.1-6
Heat flow diagram [18]
Bielfeldt and Winkhaus [19] showed that the minimum energy consumption in the Bayer cycle might be 7.88 GJ/t alumina in a modern refinery where evaporationless technology, high temperature digestion (tube digestion), efficient heat exchangers and up-to-date fluidized bed calcination are applied and the electric energy is partially produced locally by back pressure turbines. Donaldson [20] pointed out that the preferred ways of energy savings are modernization of existing refineries by installing supplementary heat recuperation equipment or enhancing their efficiency, switching over from oil or gas fuel to coal and modification of the operations in an energy conscious conception. Chin [21] emphasizes the importance of joint optimization of technology and energy supply, minimizing heat losses with red mud, elimination of heat for special evaporation and maximizing liquor productivity.

The main aim of the optimisation of the caustic soda concentration in the whole Bayer cycle is to reduce the quantity of the water to be evaporated. In this respect the high temperature digestion (by means of tube digester) has determining importance, because a less concentrated caustic soda liquor can be used at higher temperature digestion, consequently, the output of flash expansion in the extraction will be increased. Although more heat input is required for digestion stage but this is overcompensated by reduced evaporator losses.

The heat recuperation can be improved by increasing the average heat transfer coefficient at the digestion by means of an optimized cycle time between two cleaning operations and by increasing heating surface area in the heat exchangers and autoclaves.

The specific energy consumption for hydrate calcination has been reduced down to 3100 MJ/t of alumina in an up-to-date gas-suspension-calciner retrofitted from rotary kiln at 1500 t alumina per day production rate [22].

A further great potential for energy conservation is the intensification of the red mud settling and washing, which can reduce the waste heat flow with the mud. (in Figure 1.1-6 signed by No. 8.= 1000 MJ/t of alumina) and the dissolved caustic soda losses, as well. Evaporation can be reduced by decreasing the wash water demand.

The raising of efficiency in the cycle (liquor productivity,) careful fitting of technology to the properties of the bauxite processed and optimization of the concentration relations seem to be less investment demanding ways of energy conservation.

1.1.2.3 Alumina quality and liquor productivity

The requirement relating to both the increasing chemical purity and given physical properties of metal grade alumina is more and more definite.
The typical level of impurities of the metal grade alumina can be seen in Table 1.1-6 [23].

Table 1.1-6
Typical level of impurities in the metal grade alumina [23]

<table>
<thead>
<tr>
<th>Impurity</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>0.015</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.015</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.003</td>
</tr>
<tr>
<td>CaO</td>
<td>0.015</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.001</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.002</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.005</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The physical properties of the typical metal grade alumina suitable for feeding of the automated centre-worked pots with prebaked anodes are summarized in Table 1.1-7.

Table 1.1-7
Physical properties of a typical sandy type alumina compared with a fluory type [23]

<table>
<thead>
<tr>
<th>Properties</th>
<th>Alumina type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec. surface area (BET) m²/g</td>
<td>Sandy</td>
</tr>
<tr>
<td>a- Al₂O₂ %</td>
<td>50-80</td>
</tr>
<tr>
<td>Grains < 45 μm %</td>
<td>20-10</td>
</tr>
<tr>
<td>Grains > 105 μm %</td>
<td>10-20</td>
</tr>
<tr>
<td>Apparent density g/cm³</td>
<td>0.95</td>
</tr>
<tr>
<td>Angle of repose</td>
<td>35-30</td>
</tr>
<tr>
<td>L.O.I.%</td>
<td>0.6-0.9</td>
</tr>
<tr>
<td>P₂O₅ %</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

The alumina refineries producing floury type alumina (mostly old and small capacity plants) are to be converted into sandy productions or to use them for manufacturing specialty alumina-hydrates and aluminas, eventually to be closed in the next future already.

Increasing the liquor productivity is a very important means to save energy. The actual characteristic liquor productivity in plants for sandy alumina is about 55 gpl and in plants for floury alumina 70-75 gpl. It is expected that alumina plants producing floury alumina will disappear. It is estimated that liquor productivity-values in the range of 80 to 90 gpl may soon become common [24]. This forecast can be justified by the results achieved at the Gove Alumina Plant by adapting the Alusuisse
precipitation process to convert floury alumina production into sandy [25].

The liquor productivity in function of time relating to both sandy and floury type alumina is plotted in Figure 1.1-7. It can be stated that no more floury metal grade alumina will be produced at the end of this decade.

![Figure 1.1-7](image)

Figure 1.1-7
Alumina quality and liquor productivity

In connection with the liquor productivity the importance of the reduction of organic and inorganic impurities of the process liquor should be mentioned.

The increase of the liquor productivity is the most economic way to raise production capacity of the given alumina plants (brownfield expansion). This could result an additional world capacity of 4 million tonne/a of alumina.

1.1.3 Product restructuring

It has been emphasized already that one of the most effective means to increase the competitiveness of the alumina refineries seems to manufacture higher value, new products based on the alumina cycle. Gallium, vanadium-pentoxide, alumina-hydrate, special aluminas, fused corundum, mullite and special refractories, abrasive materials, Al_2O_3 based fibres (insulators), sodium-silicate (water glass), zeolites
(detergents) and aluminium-sulphate can be mentioned among these without completeness. According to Lester A.D. Chin the special products can be made in alumina plants are belonging to two main groups, namely to co-products and by-products [26, 27] Co-products include aluminium-hydroxide products, activated aluminas, industrial aluminium chemicals and ceramic aluminas, while gallium and cements are the two significant by-products.

The estimated quantity of the specialty alumina chemicals products amounts to 8 to 10 per cent of all production of alumina plants.

Figure 1.1-8 shows the conceptual possibilities for producing chemicals in connection with the Bayer process, plotted by Mr Chin [26]. As a traditional product in this field the alumina trihydrate can be mentioned for non-metallurgical uses [28]. The demand is increasing to use it as flame retardant filler [29].
1.1.3.1 Main strategies to produce specialty alumina chemicals

There are three main strategies:

1. Manufacturing specialty alumina chemicals in connection with the production of metal grade alumina in Bayer (or sinter) refinery. (See Figure 1.1-8).

2. Manufacturing only specialty alumina chemicals in the given alumina refinery based on bauxite processing. (e.g. Martinswerk in Bergheim (D), Burntisland (U.K.), Kidricevo (YU), Mosonmagyaróvár (H).)

3. Manufacturing specialty alumina chemicals from the alumina-trihydrate (or alumina) transported from alumina plant in a chemical plant (mostly focused on one or few selected products only) located in close vicinity to the market.

The combined production of metal grade alumina and alumina chemicals has both advantages and disadvantages

The main preferences are the availability of the relatively cheap raw material (hydrate, alumina or process liquor) for special alumina chemicals (without transportation and storage costs) the infrastructure and the trained personnel.

The main disadvantages may be the high production cost of the metal grade alumina or alumina hydrate (mostly small and old refineries are considered), the more complicated control of material and energy balances and harmonizing the operations of different nature and scale, difficulties in management, cost accounting and marketing.

It is clear, however, that some specialty alumina chemicals can be produced technically and/or economically only at the alumina refinery, where either the process liquor is used as raw material and/or mass production is required.

Such products are:
- gallium,
- zeolite,
- aluminium trihydrate,
- vanadium-salt,
- aluminium-sulphate,
- ceramic aluminas.

Manufacturing specialty alumina chemicals only in a given alumina plant is more and more characteristic nowadays in some small and old (sometimes reconstructed) alumina refineries. The process technology is mostly very flexible in these plants (lot of and small size equipments, batch precipitation, many tanks for different operations, etc.) and the experiences of the well trained personnel can be utilized very easily in the similar field.
More sophisticated and special products can also be produced in such plants (which can be considered as chemical plants and no longer as alumina refineries) where the added value of the products can be extremely high.

Establishment of such type of greenfield chemical plants with relatively low capacity based on bauxite processing (trihydrate type, high grade bauxite is preferred) can be mentioned as a latest tendency. There are some projects under consideration and approval.

Manufacturing of specialty alumina chemicals from imported alumina-trihydrate or alumina is characteristic for the countries where alumina refinery does not exist yet, however, the chemical industry needs the related products. They can be market related chemical plants, specialized for given product(s) only. Very special products as composites, catalysts, integrated circuit substrates can be manufactured in cooperation with end-user only and the establishment of such plants need cooperation (e.g. joint venture) with the companies disposing the proper license and know-how.

Any of the a.m. three possibilities of the production of co-products and by-products of the Bayer alumina production can be realised in developing countries, too. As first stage, however, the manufacturing of the products mentioned in connection with metal-grade alumina production should be preferred. In such way the expected economic result would be achieved by mass production of the valuable but less sophisticated alumina chemicals.

1.1.4 Forecast of the further development of the world alumina industry

1. The geographical and product restructuring of the world alumina industry is going on and will be continued.

2. The metal grade alumina production will be more and more concentrated in the close vicinity of the large and high grade bauxite deposits (significant part of them can be found in developing countries.)

3. The technical development of the metal grade alumina production will be focused on material and energy saving, process control and alumina quality. The tube digestion and caustic soda regeneration have special importance in the next future already.

4. The availability of the cheap metal grade alumina (and alumina hydrate) promotes the economic manufacturing of the specialty alumina chemicals.

5. The product restructuring means the production of increasing amount of specialty alumina chemicals partly in connection with metal grade alumina production, partly in independent chemical plants using either bauxite or alumina hydrate (alumina) as raw material.
References

1.2 PRODUCTION, USE AND MARKET FOR CO-PRODUCTS AND BY-PRODUCTS IN CONNECTION WITH BAYER ALUMINA PRODUCTION

T. Kálmán

1.2.1 Scope of co- and by-products

The aluminium containing compounds are one of the highest volume inorganic chemical products in the world. Most of these compounds are the originates of aluminium hydroxides or aluminas which are the direct products of the basic Bayer process for over 100 years.

Approximately 90 % of alumina resulting from Bayer process is used for the manufacture of aluminium - an end use specifically excluded from this study - and the remainder is converted into other commercial aluminium containing products. The names of these products are different from country to country, however the most commonly used names are specialty alumina products or alumina chemicals.

Beside of the above mentioned direct products of alumina refining by the Bayer process there are other closely related products, which can be obtained from the down streams of Bayer circuit. The production of these by-products - namely gallium and vanadium pentoxide - is important not because of their alumina content but because of their impact on the overall economy of the Bayer process.

The simplified flowchart - Figure 1.2-1 - shows all of the co- and by-products which are originating from or relating to alumina refining by the Bayer process.

According to the flowchart the following main groups of products can be distinguished.
1.2.2 Co-products

1.2.2.1 Bauxite

Bauxite is weathered rock consisting mainly of aluminium hydroxide minerals with variable amount of reactive and non-reactive silica, iron oxides and titania.

The world bauxite production of different qualities approaches 100 million metric tons a year, and the 90% of this quantity is used for the production of aluminium hydroxides and oxides.

The residual - non-metallurgical grade bauxite - is used in abrasives, refractories, chemicals and other special products like proppants, sorbents, filter aids etc.

The non-metallurgical grade bauxites must meet much more rigid requirements with regard to iron oxide, silica and titania.
contents than the metallurgical grade ones used in bauxite refining plants.

1.2.2.2 Aluminium trihydroxide

Aluminium trihydroxide (termed also gibbsite, hydrargillite, \(\alpha-,\beta-,\gamma-Al(OH)_3\), ATH) is one of the direct products in the Bayer process using bauxite refining plants and consists of both quasi spherical and irregular grains with sizes from a few microns to over 100 microns, however the individual crystals may be much smaller. It is a non-abrasive, off white or white stable, odourless, non-toxic, and chemically inert powder with Mohs hardness of 2.5 to 3.5, a specific gravity of 2.42. It should be also noted that ATH has quite few important end use oriented properties, namely:

i ability of creating arc and track resistance in polymer systems

ii thermal stability at processing temperatures of many organic matrix

iii the ability to cool organic system on heating higher temperatures due to its endothermic decomposition.

ATH is manufactured in the precipitation step of the Bayer circuit and produced in a wide range of grades and particle sizes depending upon the precipitation technology applied. The colour of Bayer ATH is generally off white, due to its organics contamination. Currently, the whitest colour and highest purity commercial ATH products come from non-Bayer processes. The major uses of aluminium trihydroxide outside of the production of calcined metal grade alumina are shown in Figure 1.2-2.

It can be seen from Figure 1.2-2 that the end use applications of ATH for non-metallurgical purposes are extremely numerous, therefore the discussion here-below will cover only some of the most important areas of ATH manufactures and end-use applications.
Aluminium trihydroxide as raw material for the production of co-products for non-metallurgical use

Aluminium sulphate

The aluminium sulphate (Al₂(SO₄)₃·nH₂O) is white, crystallized material which can be produced by the reaction of Al(OH)₃ and sulphuric acid. Aluminium sulphate is used in large quantities for municipal and industrial water treatment and for the paper industry. More details on Hungarian practice will be given in Chapter 2.4.

Zeolites

Generally, synthetic zeolites are white, porous, crystalline sodium alumina silicates with a regular structure. The range of zeolites are so versatile that it would be difficult even to list all the possible applications.
Zeolites are used first of all as water softeners, detergents, sorption agents, ion-exchange resins, catalysts etc.

More details on zeolites in Hungarian practice will be given in Chapter 2.3.

Aluminium fluoride

Aluminium fluoride is a colourless or white, crystalline material which is used in large quantities for the production of cryolite as solvent for electrolyte reduction of alumina to aluminium in the Hall-Heroult process.

Basically, there are two processes - known as dry and wet processes - available for the production of aluminium fluoride. The dry process is based on the reaction below:

$$\text{Al(OH)}_3 + 3\text{HF} \rightarrow \text{AlF}_3 + 3\text{H}_2\text{O} \quad \{1\}$$

The resulting products contain $\approx 92\%$ of AlF_3 with $\approx 0.3\%$ silica.

The wet process resulting higher purity of AlF_3 than that of dry process is based on the following reaction:

$$\text{Al(OH)}_3 + \text{H}_2\text{CIF}_6 \rightarrow 2\text{AlF}_3 + \text{SiO}_2 + 4\text{H}_2\text{O} \quad \{2\}$$

AlF_3 is than precipitated from the instable solution by heating/agitation and the product is subjected to calcination to remove crystalline water.

The calcined product contains $\approx 96\%$ AlF_3 with $<0.1\%$ of silica. Beside the major use of AlF_3 for aluminium electrolyses there are other minor but important applications, too. For example it is used as a flux in brazing, and for removing the magnesium from aluminium scrap during the refining process. It is also used in ceramic refractory, glazes and fine glass industries.

1.2.2.5 Aluminium trihydroxide for direct applications

Since the application fields of ATH as additive are extremly large (see Figure 1.2-2) only its most important applications will be discussed in details here.

Aluminium trihydroxide as filler/flame retardant filler

Aluminium trihydroxide originating from Bayer or non-Bayer processes has all the preconditions (large production background, availability in a wide range of qualities, non-toxicity, chemical inertness, outstanding fire-retardant and smoke-suppressant properties) to be an effective flame retardant filler [1].
When a polymer filled with ATH is exposed to fire ATH has two useful functions and acts as flame retardant both in condensed and flame phases. It endothermically decomposes above approx. 220 °C. By-products of this decomposition are water and anhydrous alumina, thus inhibiting the fire by acting as a heat sink and absorbing energy.

The second useful function is that during the reaction water vapour is released which cools the fire on the one hand and helps to prevent the oxygen in the air from "fanning the flames" on the other hand.

Additionally - and perhaps more importantly - no toxic fumes are associated with the reaction unlike the halogenized hydrocarbon compounds which earlier were considered as suitable fire retardants.

While these materials are effective fire-retardants indeed, they decompose into corrosive and toxic by-products to the extent that often more damage is caused by the decomposition products than by the fire itself.

Apart from the favourable features of ATH, the main motivation for its steadily expanding use is the consumer safety-oriented government legislation according to which certain products (carpet backings, automobile and building furnishings etc.) should possess the specified flame retardancy.

Although there are many advantages of using ATH as a (flame retardant) filler, there are a few disadvantages limiting its use, too [2]. These are the relatively low end-processing temperature (200 °C or below) and the considerable strength reduction in plastics when ATH charge is increased. The later can be partially diminished by using coupling agents like silanes which bond the ATH to the organic polymer with an increased physical strength result.

The most important fields of current use of aluminium trihydroxide in polymer systems are listed in Table 1.2-1.
Table 1.2-1.
ATH containing polymers

<table>
<thead>
<tr>
<th>POLYMER SYSTEMS</th>
<th>Elastomers</th>
<th>Thermoplastics</th>
<th>Thermosets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene- propylene terpolymer</td>
<td>Polyelefins and their copolymers</td>
<td>Epoxy Phenolic Polyester Polyurethane</td>
<td></td>
</tr>
<tr>
<td>Styrene-butadiene copolymer</td>
<td>Polyvinil chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene polymer Polyisoprene, synthetic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacture of aluminium trihydroxide

All the secondary processes aiming to produce specialty aluminium trihydroxide are generally based on a mechanical alteration of the Bayer gibbsite crystal size, shape and particle size distribution.

Wet or dry grinding and static or centrifugal classification systems are widely used to produce white or off white, ground and classified ATH products especially for the large range of polymer applications.

The relatively simple grinding and classification techniques can be used economically up to 2 micron median particle size of the ground product, however, below of 2 or even below 1 micron the chemical reactions (precipitation) return as the only technique by which the desired submicron size, narrow distribution products can be produced economically.

As to the grinding, many different mill types including hammer mills, roller mills, fluid-bed mills, air-jet mills etc. are used with varying success for the different applications.

In Hungary, air jet mill together with external, static classification units are used for the production of ground ATH products [2]. For more details see Chapter 2.1.

Some of the characteristics data of typical ground products by Hungalu Hungamola Ltd., and ALCOA Europe are listed in Table 1.2-2.
Table 1.2-2.
Characteristics data of typical ground products

<table>
<thead>
<tr>
<th></th>
<th>HUNGAMOLA ALOLT</th>
<th>ALCOA M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 8 30</td>
<td>15 10 6</td>
</tr>
<tr>
<td>d_{50} micron</td>
<td>5- 10- 5-</td>
<td>10- 8- 5-</td>
</tr>
<tr>
<td></td>
<td>10 15 10</td>
<td>12 10 6</td>
</tr>
<tr>
<td>white</td>
<td>off white or white</td>
<td>white</td>
</tr>
<tr>
<td>Whiteness*</td>
<td>88- 90- 92- 92 54</td>
<td>95- 96 96 96</td>
</tr>
<tr>
<td>Surface area, BET, m²/g</td>
<td>≈1 >2 >3</td>
<td>1- 2- 3-</td>
</tr>
<tr>
<td></td>
<td>2 3 4</td>
<td></td>
</tr>
<tr>
<td>Al(OH)₃ cont. %</td>
<td>>99.5</td>
<td>>99.6</td>
</tr>
</tbody>
</table>

*Measured by different instruments

Current and future market for aluminium trihydroxide

The demand for ATH is buoyant and according to trends it is likely to be so in the future, too since the ATH products are finding increasing bulk of use in water and effluent treatment, and are called for as detergents and fire retardant fillers. All over the world, the government legislations are likely to ensure continued growth of their use for these important environment protective applications.

1.2.2.4 Transition aluminium oxides

The transition aluminas (commonly termed also as activated or sometimes active aluminas) are produced from aluminium trihydroxides by controlled heating to remove most of the water that is chemically bound as hydroxils.

Nowadays, the activated alumina term is applied for all the alumina crystal morphologies which are porous in structure and produced by thermal dehydration. Their crystal structure is chi, eta, gamma, and rho alumina in the temperature range of approx 200 to 900 °C. There is delta, kappa and theta alumina in the higher temperature range of approx 900 to 1100 °C.
Activated aluminas are extensively used in adsorption and catalysis where their large surface area, pore structure, and unique surface properties play essential roles.

The change in specific surface area of ATH in function of temperature is shown in Figure 1.2-3.

![Figure 1.2-3](image.png)

Specific surface area of ATH vs temperature

Figure 1.2-3 shows that the specific surface area of ATH is growing in function of increasing temperature up to approx 400 °C where the largest surface area of ATH can be obtained.

Beside the specific surface area, other important physical parameters - particle sizes, shapes, and distributions, pore volume and structure, abrasion resistance, the kind of formation - are the main features of activated aluminas produced.

Application of activated aluminas

Figure 1.2-4 is illustrating the main steps of producing activated aluminas and their use.
Figure 1.2-6
Application of activated aluminas

Market for activated aluminas

About 125 kt of activated aluminas are used each year as catalysts, catalyst supports and several types of dehydration and (selective) adsorption are also figuring on the list of application.
Since the main fields of ATH applications cover the steadily growing industrial branches, the increasing use of activated aluminas is expected, too.

1.2.2.5 Calcined, fused and sintered aluminas

Calcined alumina

This product is generally obtained from Bayer aluminium trihydroxide by calcining in rotary kilns and/or fluid-bed calciners. The conversion to α-aluminium oxide is completed approximately within an hour and at the temperature of 1200 - 1300 °C.

The properties of the resulting product depend upon the quality of feedstock retention time, and the use of mineralizers. The products' alumina content ranges between 98 % and 99.8 % with a proportion of approximately 80 % alpha form, and the surface area is of 0.5 m²/g - to 20 m²/g.

They are used in the form of either unground, ground or super ground products with normal, intermediate and low soda contents for various non-metallurgical applications or are further processing to sintered tabular or fused aluminas is foreseen.

Use of normal soda grade alumina

Normal soda grades of ground materials are produced in different crystal sizes. Materials consisting of small - less than 1 micron - crystals are used in the manufacture of abrasives for (metal) polishing, and serve as additive to glasses and fibre glass.

Products of larger crystal size are used for the production of electrical porcelain, kiln furniture and sanitary ware, and as a feedstock to produce fused alumina.

Use of intermediate soda grade aluminas

These grades are more thermally reactive and possess better dielectric properties. They are used for electrical insulators and spark plugs.

As polishing material and high strength catalyst carriers they are also used in the production of whiteware porcelains.

Use of low soda grade aluminas

These grades provide good electrical properties and uniform shrinkage during firing. Their applications are mainly in electrical and electronic ceramics, high density wear parts, and alumina involving advanced ceramics.
Development trends of the latter are:

i) improving mechanical properties of alumina ceramics by the improvement of their microstructure and composition

ii) production of transformation - toughened alumina ceramics

iii) producing very fine - grained bodies by using submicron powders in size

iv) producing alumina composites by direct oxidation of molten metal

v) development of fibre - reinforced alumina ceramics with outstanding mechanical properties

vi) development of alumina powder production by using flame, plasma and spray pyrolysis.

Fused products

White fused alumina is produced from calcined Bayer alumina in arc furnaces. The fused grain with alumina content of >99.5% is crushed, ground and classified. The properties of fused products can be modified by the addition of elements like chromium, titania or zirconia. The fused alumina products are mainly used for the production of abrasives and refractories.

Sintered aluminas

Sintered tabular aluminas were developed in the 1930s by the Aluminium Company of America (ALCOA) and its name has been chosen because of its large tablet like crystals of 50 - 400 micron in size. It is produced by heating calcined alpha alumina to the fusion point and results in fine alpha form crystallites converting into large hexagonal elongated crystals.

The sintered material is crushed and grounded (classified) to offer a wide range of particle sizes - from 6.4 mm to less than 44 microns.

The tabular alumina products are featured with excellent physical and chemical properties (e.g. high chemical purity, extreme hardness, high melting point, good thermal shock resistance, chemical internes etc.) so they are extensively used as refractory raw material. Generally, refractories made of tabular alumina are needed in production processes where the temperature are higher than approx. 600 °C with a number of uses in the range of about 1400 to 1950 °C.

The greatest user of tabular alumina based refractories together high quality aluminate cement is the iron and steel industry consuming more than 50% of the products.
Tabular and other alumina based or involved refectories are used for the following applications:

i crude oil refineries and petrochemical processes
ii aluminium production
iii glass production
iv casting of high-temperature steel alloys

Calcium aluminate cement

For over a 100 years, calcium-aluminate cement (CAC) has been used as binder in refractory compositions. These cements can be manufactured from bauxite and/or alumina and limestone by sintering/fusing the raw material mixture. The sinter or clinker in which the major hydrating phase is calcium aluminate (CaO·Al₂O₃ and CaO·Al₂O₃) is ground to the required fineness. Three different qualities of CAC - low-, intermediate-, and high-purity (abbreviated as LP-, IP-, and HP-CAC resp) can be distinguished depending upon the contamination of the raw material used for the production.

Production of CAC

Calcium aluminate cements of low- and intermediate purities can be produced of high - iron bauxite and of CaSO₄ by sundering it in rotary kilns at a temperature of approx. 1350 to 1450 °C.

As to the fusion method: limestone and bauxite are melted in electric furnaces or in vertical kilns.

The properties of clinker are depending upon the type and the rate of cooling.

High-purity CAC can be manufactured from high-purity limestone and from calcined alumina by sintering them in rotary kilns.

HP clinker of good quality is containing 0.2 to 0.3 % of free CaO and its L.O.I. is <0.5 % at 1100 °C.

Market for calcined, fused and sintered alumina products

The bulk markets for calcined alumina are relatively static - varying mainly with the overall industrial activities - so no important changes are expected in the future.

In 1989, the use of abrasives is estimated to be 300 kt, consisting of fused alumina grain, mainly. The overall market for abrasives is declining partly because a better abrasive product lasts longer and partly because parts are being made to increasingly accurate tolerance and thus require less finishing.
As far as the refractories are concerned, they consumed 650 kt of calcined and tabular aluminas in 1989 [3].

Their use is declining since on one the hand developments on refractory saving technologies have proved to be successful and on the other hand the overall production of iron and steel industry has been decreased significantly.

On the market the demand for certain ceramics products - like spark plugs, insulators, white wares etc. - is stable (375 kt in 1989) and likely to be so in the future, too.

There are, however important, growing areas of specialty alumina application which are as follows:

- use as wear material for liners, chutes, cyclones, nozzles, mechanical seals, cutting tools, bearings etc. in many industrial branches
- potential growth is expected in the use of translucent alumina for gas discharge lamp envelopes
- increasing production of alumina silicate fibre insulation of which 195 kt were used in 1989 [3]
- fibres with higher (>72 %) alumina content
- use for higher grades of alumina and both for ceramic matrix and metal matrix composites.

1.2.3 By-products

1.2.3.1 Gallium

Gallium is a silvery-blue metal with similar chemical properties to those of aluminium and zinc and with several unusual physical properties. The main uses for gallium are in semiconducting compounds like GaAs, GaP, GaAlAs etc. These compounds have unusual and outstanding properties which are enabling the development of much higher speed, more compact computers, more efficient microwave receivers, amplifiers and transmitters for satellites and optoelectronic links.

Alloying or mixing of these compounds allows properties to be varied over a wide range for matching to specific needs in each application.

The most widely used techniques for the production of primary gallium are the direct electrolys of the Bayer aluminate liquor and the selective separation [4, 5] process.

Further details on gallium production (Hungarian practice) will be given in Chapter 2.10.
1.2.3.2 Vanadium pentoxide

Vanadium pentoxide is a reddish-yellow multi-component material in rhomboidal crystallinite form.

During bauxite refining by the Bayer process, vanadium containing sodium-vanadium multicomponent salt is formed consisting mainly of sodium, vanadium, fluoride, phosphorous and arsenic elements.

The salt separated out of Bayer circuit is subjected to further purification processes and the pure sodium-vanadate solution resulted is processed into vanadium pentoxide by using sulphuric acid decomposition (Hungarian practice) or selective separation/extraction or electrolyses techniques.

Details on Hungarian process are given in Chapter 2.9.

Reference

CHAPTER 2

PRODUCTS AND THEIR TECHNOLOGIES
2.1 PRODUCTION OF ALUMINIUM TRIHYDROXIDE BASED PRODUCTS AT THE AJKA ALUMINIUM INDUSTRIAL CO., LTD.

T. Kálmán, B. Szabó

Changes that have taken place in the past years in world market placed more emphasis on the alteration of production mechanism at a rapid pace. The value added products are having special characteristics and representing high technical standards. According to our surveys, in the past years the demand both on national and foreign markets increased towards classified aluminium trihydroxide products which are ground to micron grain size range, moreover, national industry consumes a significant quantity of micronized alumnum trihydroxide (ATH) purchased from western countries.

The world consumption of non-metallurgical ATH is very significant - more than two million tons at present - and is constantly increasing. Great amount of aluminium trihydroxide is used as flame retardant fillers in the synthetics, rubber and paper industry, furthermore, in the production of compounds for water treatment.

There is less, but not negligible demand for aluminium trihydroxide in other users' areas (e.g. glass enamel, ceramics coating, glass making, dye industry, cosmetics, etc).

The users' demands for aluminium trihydroxide going to be used as flame retardant fillers (still diminishing grain size possibly down to as small as some microns, narrow range of grain size along with sharp lower and upper limits) can no more be met by the Bayer-type aluminium trihydroxide. Therefore, the production of such kind of products can either be performed by adopting a proper technology, other than that of the Bayer process, or by grinding of Bayer aluminium trihydroxide.

In order to enlarge its product-structure and to meet the increasing users' demand the Ajka Aluminimindustry Co., Ltd. and the ALUTEKV-FKI Ltd. developed the ALOLT product-family which contains an almost full variety of these products.

2.1.1 Application of ALOLT products

2.1.1.1 Floor carpets

When ALOLT is mixed into the backside of floor carpets (which could be latex, rubber or foam) in a quantity of 0.5 to 1 kg/m², the flame propagation is arrested. Recommended compositions: ALOLT 2, ALOLT 8.
2.1.1.2 Hard polyurethane foam
Mixing aluminium hydroxide in the quantity of 28% total foam weight into any component before the foam producing reaction, the foam will be totally flame-resistant.

Recommended compositions: ALOLT 8, ALOLT 30.

2.1.1.3 Soft polyurethane foams
Such as furniture paddings. Flame resistance can be achieved by dipping into an aluminium trihydroxide suspension.

Recommended compositions: ALOLT 8, ALOLT 30.

2.1.1.4 Conveyor bands
Adding 14-20 weight % of aluminium trihydroxide into the rubber mixture, a flame resistance as required in the mining industry can be obtained, with the composition ALOLT 8.

2.1.1.5 PVC-coated tent-clothes
The amount of aluminium hydroxide should be about 20-25 weight % of the PVC coating. When the same textile is to be used for flat roof insulation, the amount of aluminium hydroxide to be added is about 30 weight %.

Recommended compositions: ALOLT 8.

2.1.1.6 Glass fibre reinforced polyester resin products
Such as containers, tubings, chairs, vehicle parts, sailing boats, etc.
Adding aluminium trihydroxide in a quantity of about 30 weight % of the laminate resin content, the flame is strongly suppressed, for higher aluminium trihydroxide concentration it is extinguished.

Recommended compositions: ALOLT 2, ALOLT 8, ALOLT 30.

Figure 2.1-1. illustrates the development of using flame suppression materials in USA in 1982 and 1987.

Description of production process:
Micronized aluminium trihydroxide is produced by two types of manufacturing processes. The ALOLT 1 and 1 F, 50 F and ALOLT 90 F products are produced by chemical reaction however the ALOLT 2 and 2 F, ALOLT 8 and 8 F, ALOLT 30 and 30 F are produced by grinding the ALOLT 1 and 1 F products. The filtered and washed
Al(OH)₃ is produced by chemical reaction which, considering its crystal structure, is a hydrargillite. Before grinding and marketing aluminium trihydroxide has to be dried which is carried out in an ATH-dryer of 12,000 tpy capacity, developed by Ajka Aluminiumindustrial Co., Ltd.

Figure 2.1.1
Flame retardant use in USA in year 1982 and 1987

2.1.2 Production by grinding

For grinding and separation of dried aluminium trihydroxide the Ajka Aluminiumindustrial Co., Ltd. together with the ALUTERV-FKI Ltd. has developed an air-jet mill along with separating and classification apparatus.

2.1.3.1 Principles of development of air-jet mill

The basic objective was to develop an equipment with lower operation costs than those of the units known and used at present.

It may be established in general that the specific grinding costs for a given material are affected by the following factors:

- grinding efficiency
- specific energy consumption
- abrasion resistance of materials used in the grinding chamber.

Grinding efficiency itself depends upon the following factors:
- structural solution
- material flow density applied
- free path and impact speed of particles
- pressure and velocity of grinding gas
- initial grain size of material to be ground
- feature of the grinding system (open or closed circuit)
- hardness of lining elements used in the grinding chamber.

On basis of detailed analysis of the above factors and the solution of design of the air-jet mill known at present (Anvil-mill, Majac, Micronizer, Jet-O-Mizer, Double-Impact-Mill, Fluidized Bed Counter-Jet-Mill) and the investigation resulting advantageous and disadvantageous characteristics, the conclusion has been drawn that a new type air-jet mill could be developed by eliminating the deficiency of the Micronizer-type mill thus preserving its advantageous properties.

The following aspects have been taken into consideration:

Pressure of grinding gas must be kept at higher level than usually in order to increase grinding efficiency.

Increasing pressure of grinding gas is justified by the increasing speed of power impulse, inert tension of impacting grains and at the same time they become also apparently more brittle. Both factors affect positively the impact based crushing process, however, the positive effect obtainable by increasing the pressure is restricted by the fact that, at the moment, when the inner stress attains the plastic yield stress the medium starts coarsening due to agglomeration occurred.

Figure 2.1-2 visualizes the above standing and is based on measuring data obtained from a model test unit.

Figure 2.1-2 (a) represents the specific work required to obtain an identical grinding efficiency; (b) represents the specific energy costs for equivalent work performed; (c) represents the uniformity factor of the ground product of an RR-distribution; (d) represents the 80 % grain-size of the ground product of an RR-distribution; (e) represents the specific consumption of grinding gas; and (f) represents the specific working capability of the grinding gas; all these features are plotted against the pressure of CO₂ grinding gas.

It can be read off from the graph that increasing the pressure of grinding gas increases the grinding efficiency (curve a) along with diminishing grinding costs (curve b) and growing refinement of the final product (curve c).
Figure 2.1-3. shows the essential relation according to which the useful grinding work increases hyperbolically in the function of speed (resp. pressure) of entering gas.

Calculating the rate of impact speed the value obtained is usually between one-third to twice the speed of sound, however, experimentally twice or three-times higher values can be obtained as optimum.

As to the structure of air-jet mill, the final conclusion can be drawn that grinding gas must leave the nozzle at the rate multiple of the sound velocity. In this case economical operation can be reached only if gases with the pressure of 10-25 bar are flown-out through nozzles of small diameter, because high outlet
velocities with little gas consumption can only be obtained with small diameters.

![Figure 2.1-3](image)

Figure 2.1-3

Effect of grinding gas pressure and velocity on useful grinding work

2.1.3.2 Air-jet mills in practice

Construction plans of the new air-jet mill and manufacturing of the apparatus were carried out on basis of the above principles.

Figure 2.1-4 shows the body of the air-jet mill along with 3 pregrinding chambers the feed direction being arranged tangentially to the former one. Wortex of the pregrinding chambers is generated by 4 nozzles each being arranged at 90° angles to each other and their axes are shifted in a way that they touch a theoretical circle. Two of the four nozzles serve to convey material the two others to reduce wear. The latter are operated at lower pressures and are capable of adding cooling medium or surface-treating reagents. The nozzles of the main grinding area are arranged before and behind the pregrinding chambers. The angle of direction of gas jets is adjustable. Optimization of operation of the mill is effected partly by the adjustment of the angles of nozzles, partly by setting the blade angles of the inner classifier in the main grinding area and by
changing the air pressure applied to the individual nozzles, as well.

The air-jet mill and the feeding system is located in a sound and dust proof cabinet. The sides of the cabinet are equipped with pneumatically operated folding doors to make assembly and operation easier. The control desk is in front of the cabinet, the feeding container is on its top, and the in- and outgoing pipelines are under it. An auxiliary injector is built into the pipeline, through which the granules leave, and it ensures the possibility of transportation to a greater distance, or a possible excess air supply of the separator.

![Diagram](image-url)
2.1.3.3 The external separator classifier, and cyclone

Separator

When planning and manufacturing the apparatus it was a principle that the separator and cyclone to be developed should not contain mobile parts and the resistance should be minimal. These requirements can be satisfied by a cyclon-like apparatus in which material flow takes place on an optimum spiral course. In this case the grains are affected by a constant delivery force along the course. Its principle scheme can be seen on Figure 2.1-5.

![Diagram of fine and coarse classifier](image)
This condition is fulfilled in a centrifugal field, if the radial acceleration, as well as the components of radial acceleration are constant. On the bases of development plans prepared at the ALUTERV-FKI Ltd. plant-scale apparatuses were made in two sizes (0.75 m and 1.5 m in diameter). The larger apparatus is suitable for fine, while the smaller one for rough separation. The blading of the separators, together with the mobile (blade-angle setting) mechanism can be lifted out from above, making their assembly and maintenance easier.

Cyclone

The structure of the cyclones is very similar to that of the separators, but as to their size they are much smaller (their diameter is about half of that the diameter of the separators) to ensure the air speed required for good separation. Another difference is that the inlet pipe-end is the reverse of that of the separators to make better use of the course-alternating cyclone effect, and they have fixed blades.

2.1.3 Description of the technological system

According to the schematic diagram shown in Figure 2.1-6, a grinding and separation system was developed with the air-jet mill separators and cyclones introduced above.

Dry aluminium trihydroxide is transported pneumatically from the storage bin to the feeding container of the air-jet mill. Pneumatic transportation, compressed-air supply for the air-jet mill and separators are ensured by a screw-compressor which, at the final pressure of 20 bar can convey 1.180 m³/h air. Separation is done in three stages, thus materials of various grain sizes can be obtained, according to the requirements of the customers. Products leaving with the air stream are recovered from the air in the cyclones. To recover the fine powder and to protect the environment, air leaving the cyclones is filtered by dust-separating bags. This is the very place where the finest, ALOLT 30 type product is obtained. Present capacity of the system is 1.500 - 1.6000 tpy. The contamination level, especially Fe₂O₃-contamination of ATH produced by the Ajka Aluminiumindustrial Co. Ltd. is comparatively high at present thus "white" ATH is purchased from the Magyarvar Alumina and Fused Alumina Mfg., Ltd. for the production of the chemically cleaner, F type ground products.
Because of its crystal structure and larger average grain size, the grinding of ATH from Mosonmagyaróvár is harder, so it has to be ground twice. Thus the capacity of the apparatuses decreases, and the specific energy requirement is higher.

Specific energy consumption of producing ALOLT products when grinding our own ATH is as follows:

- electric energy 800 kWh/t
- compressed air 5.200 Nm³/t

2.1.4 Production by crystallization

ATH products like ALOLT 90 (average grain size 1.0 - 3.0 µm) and ALOLT 50 (grain size 3.0 - 5.0 µm) are having good sale possibilities for special uses. The great energy demand would make unprofitable the production of such grain size products by grinding. The manufacture of these products is practically obtained with special crystallization technology. The grain size of the resulting ATH can be regulated by changing the precipitation parameters, e.g., the cooling of seeding rate aluminium-sulfate additive. The great advantage of the process is that the precipitation efficiency is not lower than the efficiency which derives from the production of the normal Bayer ATH, even it can be exceeded if parameters are well chosen. We
succeeded in achieving 55 - 60% precipitation efficiency during 48 hours retention time in our large-size laboratory. The grain size distribution of the originating ATH is homogeneous, and does not require any further procedures. The technological sketch of fine ATH production can be seen in Figure 2.1-7.

Figure 2.1-7
Technological sketch of fine ATH production

Figure 2.1-8 illustrates the grain size distribution of fine ATH produced by precipitation.
Figure 2.1-8
Grain size distribution of fine ATH produced by precipitation

The main parameters of our product can be seen in Tables 2.1-1 and 2.1-2

Table 2.1-1.
Product manufactured by granulation

<table>
<thead>
<tr>
<th>General characteristic parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(OH)(_3)</td>
<td>99.5 %</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>0.01 - 0.02 %</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>0.01 - 0.025 %</td>
</tr>
<tr>
<td>Na(_2)O total</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Na(_2)O water soluble</td>
<td>0.03 %</td>
</tr>
<tr>
<td>Moisture content</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Combustion loss</td>
<td>34.5 %</td>
</tr>
</tbody>
</table>
Table 2.1-2
Characteristics of ALOLT products

<table>
<thead>
<tr>
<th>Product</th>
<th>Litre weight kg/m³</th>
<th>Density D₅₀ g/cm³</th>
<th>Spec. surface m²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOLT 1, 1 F</td>
<td>1.200</td>
<td>2.4</td>
<td>40-60</td>
</tr>
<tr>
<td>ALOLT 2, 2 F</td>
<td>600</td>
<td>2.4</td>
<td>20-25</td>
</tr>
<tr>
<td>ALOLT 8, 8 F</td>
<td>400</td>
<td>2.4</td>
<td>10-15</td>
</tr>
<tr>
<td>ALOLT 10, 30 F</td>
<td>300</td>
<td>2.4</td>
<td>5-10</td>
</tr>
<tr>
<td>ALOLT 50 F</td>
<td>250-350</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>ALOLT 90 F</td>
<td>250-300</td>
<td>2.4</td>
<td>1-3</td>
</tr>
</tbody>
</table>

The colour of product F is white since its iron and organics content is low.
2.2 PRODUCTION OF SPECIAL ALUMINIUM-HYDROXIDES AND ALUMINAS BASED ON THE BAYER CYCLE

J. Zöldi, M. Altrichter

2.2.1 Basic materials of specialty alumina-hydrate and alumina products

Most of the special alumina-hydrates and aluminas are produced using intermediate products of Bayer refineries as basic materials. Requirements of different users for physical and chemical properties of the special products are extremely varied.

The objective of this lecture is to show the most important properties of the main product lines of special aluminas, comparing to that of smelting grade alumina and showing the main technological modifications used for producing these special products.

In the last two decades due to development of electrolysis technology and environmental protection the requirements of aluminium smelters for chemical and physical properties of alumina became more and more strict. The main characteristic properties (chemical impurities, particle size, calcination degree, and handling properties) of the smelting grade (sandy type) alumina are summarized in Table 2.2-1.

<table>
<thead>
<tr>
<th>Chemical impurities:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>total Na₂O</td>
<td>0.3-0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.010-0.015</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.010-0.015</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.0024-0.0028</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0010-0.0015</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0005-0.0008</td>
</tr>
<tr>
<td>Zn</td>
<td>0.0006-0.0012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particle size:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45 µm</td>
<td>5 - 7</td>
</tr>
<tr>
<td>20 µm</td>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>10 µm</td>
<td>0.2 - 0.7</td>
</tr>
<tr>
<td>Median particle size</td>
<td>60 - 70 µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcination degree:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.O.I. (300-1000 °C)</td>
<td>0.6 - 0.8</td>
</tr>
<tr>
<td>α - Al₂O₃ content</td>
<td>7 - 20</td>
</tr>
<tr>
<td>Specific surface area (B.E.T.)</td>
<td>50 - 75 m²/g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling properties:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density ("loose")</td>
<td>920 - 1000 g/dm³</td>
</tr>
<tr>
<td>Bulk density ("tapped")</td>
<td>1120 - 1160 g/dm³</td>
</tr>
<tr>
<td>Angle of repose</td>
<td>30 - 34 grade</td>
</tr>
<tr>
<td>Attrition index</td>
<td>15 - 20 kg/t</td>
</tr>
<tr>
<td>Dust index</td>
<td>1 - 2 kg/t</td>
</tr>
</tbody>
</table>
Special alumina products differ from smelting grade alumina in purity, particle size, calcination degree, density, surface properties, hardness, shape of crystals, colour etc. On the basis of mineralogical composition the special products can be classified as follows:

- alumina hydroxides,
- activated aluminas,
- specialty calcined aluminas,
- high purity aluminas.

The connection between Bayer-cycle and special alumina-hydrate and alumina producing technologies is shown in Figure 2.2-1. Most important technological modifications used for producing above mentioned product lines will be discussed one by one.

2.2.2 Aluminium hydroxides

The commonly used term, alumina-hydrate covers several different crystalline and amorphous aluminium hydroxides [1]. Minerological classification of different aluminium hydroxides is shown in Figure 2.2-2.
All of the aluminium-hydroxides shown in Figure 2.2-2. are true hydroxides and do not contain water or hydration. Green liquor and filtered, washed alumina-hydrate from Bayer-cycle can be used as basic material for producing special aluminium hydroxide products (see Figure 2.2-1).

Aluminium-hydroxid products used in several field of industry (as filler material, flame retardant, pigment, basic material of synthetic marble and onyx etc.) can be characterized by the main properties summarized in Table 2.2-2. To reach the special properties (whiteness, chemical purity, grain size, specific surface properties etc.) the following technological solution are applied:

- liquor purification,
- grinding and classification,
- special, fine precipitation,
- surface treatment.
Table 2.2-2
Chemical and Physical Properties of Special Alumina Hydrate Products

<table>
<thead>
<tr>
<th>Chemical impurities</th>
<th>Normal products</th>
<th>Pure products</th>
</tr>
</thead>
<tbody>
<tr>
<td>total Na$_2$O</td>
<td>0.3-0.4</td>
<td>max 0.1</td>
</tr>
<tr>
<td>washable Na$_2$O</td>
<td>0.2-0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>= 0.015</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>= 0.015</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>= 65</td>
<td>=65.3</td>
</tr>
</tbody>
</table>

Physical properties

<table>
<thead>
<tr>
<th></th>
<th>Unground</th>
<th>Ground</th>
<th>Fine precipitated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median grain size</td>
<td>µm: 50-80</td>
<td>3-50</td>
<td>0.5-3.0</td>
</tr>
<tr>
<td>BET surface area</td>
<td>m2/g:</td>
<td><0.1</td>
<td><2</td>
</tr>
<tr>
<td>Bulk density</td>
<td>g/dm3:</td>
<td>=1200 500-1000</td>
<td>160-400</td>
</tr>
<tr>
<td>Whiteness (Elrepho 457 nm):</td>
<td><80 80-95</td>
<td>>95</td>
<td></td>
</tr>
<tr>
<td>Surface treatment:</td>
<td>without</td>
<td>with and without</td>
<td></td>
</tr>
<tr>
<td>Oil adsorption cm3/g:</td>
<td>= 25</td>
<td>15-60 *</td>
<td></td>
</tr>
<tr>
<td>DOP. adsorption cm3/g:</td>
<td>= 10</td>
<td>15-70 *</td>
<td></td>
</tr>
</tbody>
</table>

* = depending on surface treatment

2.2.2.1 Liquor purification

Decreasing of the colouring organics

Alumina hydrate obtained from the Bayer-cycle usually has rose-yellowish colour because of colouring organic compounds originated from bauxite and enriched in the Bayer cycle. Iron oxide content of bauxite residue built in a small quantity into the alumina-hydrate imparts a rose-like colour to the hydroxide, too. The soda-sinter process produces a hydroxide that is practically completely free from organic colouring matter and is white. Very few sinter plants are, however, in operation today. A lot of efforts have been made for liquor purification to satisfy the market demand for white aluminium hydroxide. The following methods can be used for decreasing the colouring organic contents of Bayer-liquor:

- Kieserite (MgSO$_4$·H$_2$O) and other magnesium compounds are proposed by ALCOA Chemie (former Giulini) [2] for humate removal. According to the procedure kieserite (MgSO$_4$·H$_2$O) is added into the bauxite digester or clean pregnant liquor prior to security filtration. In aluminate liquor there is a co-precipitation of Mg(OH)$_2$ and Al(OH)$_3$ which adsorb the high molecular weight humates. The method is effective in reduction of iron content of the liquor as well. Quantity of the kieserite added is 6-10 kg/t alumina.

- Wet oxidation by oxygen or air at different temperatures (200-260 °C) is proposed by others [3, 4 - 6]. During the wet oxidation of aluminate liquor first the colouring high
molecular weight humates are decomposed. Humate destruction in a caustic liquor of 225 gpl caustic Na$_2$CO$_3$ concentration at 200 °C in the presence of 0.5 gpl O$_2$ is shown in Figure 2.2-3.

![Figure 2.2-3](image)

Figure 2.2-3

Wet oxidation of organic compounds

- Decomposition of the organic compounds by so called "liquor burning". Showa Aluminium has developed a new process [7, 8]. According to the process alumina trihydrate and the Bayer liquor is mixed together and the resultant mixture is calcined, sodium organates in the Bayer liquor are decomposed and, reacting with the alumina component forms sodium aluminate solid. Process flow diagram of the liquor burning is shown in Figure 2.2-4.

- Humate removal by synthetic cationic polymer additives. KAISER and NALCO suggested dosage of special cationic polymer to the pregnant liquor before security filtration for precipitation of colouring humates [9]. Quantity of the polymer added in plant practice is 15 - 50 g/m3 aluminate liquor.

- Redissolving of Bayer-hydrate in fresh caustic solution. Clean aluminate liquor can be gained by dissolving Bayer hydrate in caustic liquor at 100-105 °C temperature or at higher temperature under pressure.
Decreasing of the iron content

Different processes are used for decreasing the iron content of the aluminate liquors.

- Security (or control) filtration of the aluminate liquor using lime or calcium-aluminate as filtering aid.
- Some special synthetic flocculents can be added to the red mud settling to decrease the so-called colloidal iron content of the aluminate liquor.
- Soluble iron in green liquor can be reduced by the addition of tertiary polyamines, which chelate the soluble iron and allows it to be scavenged from the liquor by the settled red mud and during security filtration of the green liquor [10].
- Iron content of the green liquor can be decreased effectively by the so-called "scalping precipitation". By mixing of green liquor in presence of 100-200 gpl alumina hydrate during 20-30 minutes iron content of the liquor can be decreased to 2-3 mg/l.

2.2.2.2 Grinding and classification

Separate paper (Chapter 2.1) deals with this topic.
2.2.2.3 Special precipitation methods for producing super-fine aluminium hydroxides and low Na$_2$O containing hydrate products

Special precipitation processes are applied for producing amorphous hydroxides, pseudo-boehmite and super-fine (median size 0.5-3 µm) gibbsite. The main variants of special precipitation are as follows:

A./ Precipitation of amorphous gel by neutralization of the aluminate liquor and recrystallization into gibbsite, bayerite or pseudo-boehmite.

Neutralization can be made by water solution of aluminium salts, acids or CO$_2$, SO$_3$, NO$_2$ gases. Properties of the precipitated amorphous phases and crystalline phases developed after recrystallization are determined by parameters of precipitation (concentration of the reagents, temperature, velocity of the precipitation, pH of the liquor at the end of precipitation, anions present in the liquor etc.) Different phases can be formed depending on the OH$^-$/Al$_3^+$ ratio in initial amorphous phase. For example:

OH$^-$/Al$_3^+$ molar ratio: 3.0-3.3
gibbsite, boehmite, bayerite can be developed during few hours depending on other parameters.

OH$^-$/Al$_3^+$ molar ratio: 2.1-2.75
series of basic aluminium salts with composition of Al(OH)$_2$.2·X0.8

\[
X = \text{Cl}^-, \text{SO}_4^{2-}, \text{CO}_3^{2-}, ...
\]

OH$^-$/Al$_3^+$ molar ratio: <2.1 Al(OH)$_2$.2·X0.8.

In plant practice CO$_2$ gas is used for neutralization of aluminate liquor. Amorphous and crystalline phases precipitated at the different parameters of carbonization are shown in Figure 2.2-5 [12].

B./ Precipitation of fine-disperse aluminium-hydroxide (gibbsite) by using amorphous seed material.

Aluminium-hydroxid gel can be precipitated directly from the initial pregnant liquor by addition of aluminium or ammonium salts (AlF$_3$, Al$_2$(SO$_4$)$_3$, NH$_4$HCO$_3$ etc.) or separately by neutralization of aluminate liquor with acids. Homodisperse product of 0.5-3 µm grain size can be produced by these special precipitations [13-15].

C./ Precipitation of fine disperse aluminium-hydroxid using Bayer alumina hydrate ground to 3-5 µm as seed material [16].
Cristalline phases precipitated at the different parameters of carbonization
(D = DAWSONITE)

New, so-called "white-pure" aluminium hydroxide was developed in Japan, which is used as filler material at the production of onyx and synthetic marble [17]. This type of alumina hydrate can be characterized by special shape of crystals, whiteness and low Na₂O content (Table 2.2-3 and Figure 2.2-6 Sample A).

Table 2.2-3
Analyses of standard particle size ATH samples (Samples A, B and C)

<table>
<thead>
<tr>
<th>Chemical Analysis</th>
<th>Sieve Analysis</th>
<th>Average Spec. White-</th>
<th>White-</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O SiO₂ Fe₂O₃ Na₂O +74 74-44 -44 dia.(d₅₀) surface ness</td>
<td>(%)</td>
<td>µm</td>
<td>µm</td>
</tr>
<tr>
<td>Sample A 0.02 0.01 0.008 0.13 45 42 13 70 0.20 92.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample B 0.02 0.01 0.007 0.14 45 42 13 70 0.20 94.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample C 0.02 0.03 0.006 0.23 52 40 8 75 0.44 92.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alumina hydrate signed by Sample "A" was produced by special precipitation process in which crystal growth was the main process when nucleation, and agglomeration were suppressed.

2.2.2.4 Surface treatment

The main goal of the surface treatment is to increase the adhesion between the surface of the filler material and polymer, to develop organophilic (hydrophobic) surface on the filler for reaching optimum rheological properties in the mixture of polymer and filler. Two sorts of agents can be used for surface treatment:

- Coupling agents developing molecular bridges between the surface of inorganic filler and organic polymer.
- Wetting agents and surface active additives.

Application of surface treatment has a complex influence on the properties of composite materials. The interface between polymer and filler involves a complex interplay of physical and chemical factors related to the composite performance as indicated in Figure 2.2-7.

- Surface modification of the fillers affects the rheology of the polymer mix by changing wet-put, dispersion of particles, viscosity, thixotropy, and flow during plastic formation. The
adhesion determines the mechanical strength and chemical resistance of a composite.

- The filler surface interacts with the polymer through catalytic activity, orientation of molecular segments and other modifications of polymer morphology.

- The initial surface treatment should protect the mineral surface against abrasion and fracture during handling operation [18, 19].

![Figure 2.2-7](image)

Inter-relationships of polymer, filler and mechanical stresses in composites

Coupling agents

Silane coupling agents, R'Si(OR)₃, are characterized by dual functionality: R' represents an organo-functional group (such as amino, mercapto, vinyl, epoxi or methacrylate) and OR represents a hydrolysable alkoxy group attached to silicon.

R'is usually bonded to the silicon atom by a short alkyl chain. In use, the alkoxy groups hydrolyse to form silanols (Si-O-) that react with OH⁻ groups being on the surface of aluminium hydroxide. [20]
It is unlikely that any surface treatment can perform in all filler-plastic combination, but it would be impractical to supply a different treated filler for each filler-plastic combination. A cationic vinylbenzilsilane (silane "A" of Table 2.2-4.) is known to be an effective adhesion promoter for virtually all polymers to most mineral fillers.

It is also modified quite readily by simple addition of surface-active agents such as fatty acids, and phosphate surfactants. It is possible, therefore, that a single filler treatment based on "A" may be combined with commercial surface-active additives to impart the desired interface modification for almost all systems.

Table 2.2-4
Typical Commercial Silane Coupling Agents

<table>
<thead>
<tr>
<th>Silane identification</th>
<th>Organo-functional group on Silicon</th>
<th>End-use polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" 2-6032</td>
<td>CH₂CH₂NộH₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Polyethers, DAP, alkyls, polyethylene, cross-linked polyethylene, thermostet polybutadienes, polypropylene, EPM, EPR</td>
</tr>
<tr>
<td>"B" A-172 2-6082</td>
<td>CH₂CH₂NộH₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"C" A-174 2-6030</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"D" A-1100 2-6011</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"E" A-1200 2-6020</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"F" A-186</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"G" A-187</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"H" A-189</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
<tr>
<td>"I" A-143</td>
<td>CH₂CH₂N陂H₂NCH₂CH₂(NH₂CH₂)₃⁻⁻⁻⁻⁻</td>
<td>Phenolic, epoxy, melamine, polyimide, polyimide, polycarbonate polybenzimidazole, urethane, EPM, polycloprene, nitrile</td>
</tr>
</tbody>
</table>

The typical commercial silane coupling agents are shown in Table 2.2-4.
The following agents are used for surface treatment of aluminium hydroxide and alumina products:

- DSC-20, DSC-40, in Polyesther resin system
- A-186, A-187 in Epoxy resin system
- A-172 in Styrene-Butadiene system
- Y-9868 or Y-9870 in Polyethylene resin system

There are two general classes of silanes, and requirements for optimum application:

a./ neutral, volatile silanes that may require additional catalysts, ("C" in Table 2.2-4) and

b./ cationic, non-volatile silanes that are self-catalysed for reaction with surfaces, but may require solvent modification to aid dispersion in dry mixes. ("A" in Table 2.2-4).

There are two methods of the treatment of fillers with silane. The one is the "aqueous treatment" of filler when the filler is treated with diluted aqueous dispersion of silanes at the proper pH to get alignment of the silanes for maximum availability of the organo-functional group. Aqueous silane bath are generally applied to the filler within a few hours after precipitation. In general, cationic silanes are best, applied to fillers from aqueous media at a pH corresponding to the isoelectric point (IEPS) of the surface.

The second method of the treatment is the "dry blending" silanes with fillers. Silane may also be dry blended with fillers at room or at elevated temperature. A small amount of suitable solvent may be beneficial in aiding dispersion of a trace of silane over a large surface area of filler. High molecular weight amine-functional silanes, such as "A" do not diffuse readily when dry-blended with fillers at room temperature. Dilution of the silane with about 10 times its volume of a medium alcohol or glycol-ether before mixing with fillers seems to be rather effective in obtaining dispersion through the filler. The treated filler must then be dried before it is used in polymer mixes.

Other coupling-type materials for surface treatment of ATH are the zirconium-aluminates investigated by Cavedon Chemical Co. (CAVCO MOD M) [21-22]. They may be put "in-situ" to the organic-systems. They decrease the viscosity of the filled epoxy and polyester resins.

Non-coupling-materials

Lubricants and dispersion aids may be valuable in improving mixing at lower shear, but they will have no coupling action. Lubricants may allow a higher filler loading and promote improved impact strength of composites, but they do not improve flexural strength of resistance to moisture degradation of mechanical and electrical properties. Commonly used materials in this group are
lauric acids, oleic acids, octylbenzene sulphonic acids, dodecylbenzene sulphonic acids, sulpho-succinate. ALCOA has a material (LUBRAL) for surface treatment of its own fine hydrates, such as Hydral-710 and Hydral 705 for polypropylene resins.

2.2.3 Activated aluminas

Activated aluminas display high specific surface areas, large pore volume with defined pore size distribution, which are the main properties that have bearing on catalytic and adsorption behaviour. The activated aluminas are used mainly in adsorbent and catalytic processes.

They can adsorb a great number of pollutants (fluoride, phosphates, organic acids, humic acids etc.) from liquids and vapours. The degree of adsorption relies on the polarity of the substance to be adsorb. Polar substances are bound stronger than non polar ones. On the basis of selective adsorption they have long been used in the chromatography too.

Activated aluminas are available with a variety of physical properties and purity required for different applications. Main types of activated aluminas, classified on the basis of purity are shown in Table 2.2-5.
Table 2.2-5
Chemical and physical properties of activated aluminas

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>Normal type</th>
<th>Low soda type</th>
<th>High purity type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ %</td>
<td>Approx. 92</td>
<td>Approx. 99.9</td>
<td>>99.95</td>
</tr>
<tr>
<td>SiO₂ %</td>
<td>=0.015</td>
<td>0.01-0.005</td>
<td>max. 0.005</td>
</tr>
<tr>
<td>Fe₂O₃ %</td>
<td>=0.015</td>
<td>0.01-0.005</td>
<td>max. 0.005</td>
</tr>
<tr>
<td>Total Na₂O %</td>
<td>0.3-0.5</td>
<td>Approx. 0.01</td>
<td>Approx. 0.001</td>
</tr>
</tbody>
</table>

Physical Parameters

<table>
<thead>
<tr>
<th>Physical Parameter</th>
<th>Normal</th>
<th>Low soda</th>
<th>High purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area (m²/g)</td>
<td>130-180</td>
<td>250-350</td>
<td>250-350</td>
</tr>
<tr>
<td>Water adsorption (static.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 10% rel. humidity (%)</td>
<td>2-4</td>
<td>5-8(1)</td>
<td></td>
</tr>
<tr>
<td>at 60% rel. humidity (%)</td>
<td>7-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 90% rel. humidity (%)</td>
<td>17-22</td>
<td>25-40(1)</td>
<td></td>
</tr>
<tr>
<td>Crystal structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) drying at 110 °C</td>
<td>-</td>
<td>pseudo-boehmite</td>
<td>-</td>
</tr>
<tr>
<td>(2) activation at 550-650 °C</td>
<td>gamma-Al₂O₃</td>
<td>amorphous, eta-Al₂O₃</td>
<td>Pseudo-boehmite</td>
</tr>
<tr>
<td>Pore volume (cm³/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) drying at 110 °C</td>
<td>-</td>
<td>0.1-0.8</td>
<td></td>
</tr>
<tr>
<td>(2) activation at 550-650 °C</td>
<td>Approx.0.1-0.2</td>
<td>0.8-1.1</td>
<td>0.5-1.5</td>
</tr>
</tbody>
</table>

Bayer alunina hydrate and/or pregnant liquor are used as basic materials of the first two groups (normal and low soda quality) but for high purity products usually purer raw materials (aluminium, aluminium salts etc.) are needed.

The following main technological processes are used for developing the above mentioned special properties:

- special calcination,
- decrease of the impurities,
- precipitation of amorphous aluminium hydroxides,
- shaping of the products.

2.2.3.1 Special calcination

During calcination of different aluminium - hydroxides so-called "transitional" phases are formed depending on the temperature, other process conditions and the initial structure of the hydroxides (Figure 2.2-8).
These phase-transformation processes are irreversible. The crystal structure of these transitional phases affects both surface area and surface chemistry (distribution of acid and basic sites) of the products [23]. Specific surface area L.O.I. and density is registered in function of the calcination temperature in case of gibbsite calcination on Figure 2.2-9.

The calcination temperature of development of different phases depends on many parameters for instance:

- initial crystal structure,
- impurities of the initial hydroxide,
- grain size,
- velocity of the heating,
- atmosphere of the calcination etc.
X-ray diffractograms of different transitional phases developed at the calcination of amorphous hydroxide(A), bayerite(B), pseudoboehmite(C) and boehmite(D) are shown in Figure 2.2-10 [24].
The most important properties (pore size distribution, surface area, crushing strength, abrasion resistance etc.) depend very much on the procedure of calcination.
In plant practice traditional rotary kiln can be used for mild calcination. End temperature at the mild calcination of gibbsite is usually 400-600 °C. The aim of the activation is to produce highest possible specific surface area. Measuring the L.O.I. can be used for quick control of the calcination (see Figure 2.2-9).

The most up-to-date method for the activation is the so-called "flash" calcination. This method is suitable for rapid dehydration of bayerite, gibbsite, norstrandite, and boehmite. The dehydration may be advantageously effected by a special apparatus by means of a stream of hot gases. The inlet temperature of the gases in the apparatus varies from about 400 to 1200 °C, and contact time of the hydroxide with the hot gases between a fraction of second and 4-5 seconds [25].

This way, specific surface area of the activated product can be increased by 50-100 m²/g comparing to that of slow calcination.

2.2.3.2 Decreasing of the impurities

Requirements for the purity of active aluminas are different depending on the field of application. Adsorbents used for drying air or other gases can be produced by activation (and shaping) of Bayer quality aluminium-hydroxides. Higher purity is required for activated aluminas used in the fields of chromatography, and as catalyst or catalyst supports.

Decrease of the Na₂O content

Low Na₂O content is required in many fields of application. According to the literature [26-28] soda may incorporate into the alumina hydrate structure in several different ways:

- in form of occluded liquor inside aggregates between individual crystals,
- on the surface in form of organic alkali salts,
- in form of Na⁺ ions in the crystal lattice.

The alkali impurities bound on the surface of the hydrate can be decreased by intensive washing.

Low (<0.1 %) Na₂O containing material can be produced by gibbsite boehmite phase transformation (mild calcination or hydro-thermal treatment) followed by washing.

Na₂O content of gibbsite can be decreased down to 0.05% by special crystal growth at the precipitation.

Decrease of the Fe₂O₃ content

Decrease of the Fe₂O₃ content is based on the liquor purification discussed in Chapter 2.1.
2.2.3 Production of amorphous hydroxides

Amorphous hydroxides are used as basic materials of several special aluminas (adsorbents, activated aluminas, high purity aluminas for chromatography etc.). The following groups of technologies are used for production of amorphous aluminas.

1. Acidification of sodium aluminate solution by different acids and sodium carbonate.
2. Neutralization of aqueous solution of aluminium sulphate, chloride, nitrate etc., by alkalis.
3. Hydrolyses of organic-aluminium compounds.
4. Acidification of sodium aluminate solution with different acids and sodium carbonate.

Amorphous aluminas can be gained by washing and rapid calcination of the pseudo-boehmite. Activated aluminas can be produced by mild calcination of amorphous hydroxides gained according to above technology. The connection between parameters and product quality is summarized in Table 2.2-6.
Table 2.2-6
Conditions of treatment

<table>
<thead>
<tr>
<th>Treatment reagent</th>
<th>1st step Al₂O₃ (g/l)</th>
<th>1st step pH (20 °C)</th>
<th>1st step Time (hours)</th>
<th>2nd step Al₂O₃ (g/l)</th>
<th>2nd step pH (20 °C)</th>
<th>2nd step Temperature (°C)</th>
<th>2nd step Time (hours)</th>
<th>3rd step Temperature (°C)</th>
<th>3rd step Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃</td>
<td>130</td>
<td>0.7</td>
<td>3.1</td>
<td>85</td>
<td>0.5</td>
<td>160</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>90</td>
<td>0.8</td>
<td>3.1</td>
<td>85</td>
<td>0.5</td>
<td>160</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>130</td>
<td>0.4</td>
<td>4.6</td>
<td>70</td>
<td>2</td>
<td>160</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>80</td>
<td>0.2</td>
<td>6.2</td>
<td>70</td>
<td>2</td>
<td>120</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄OH</td>
<td>80</td>
<td>0.6</td>
<td>10.4</td>
<td>85</td>
<td>4</td>
<td>160</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crystallization

<table>
<thead>
<tr>
<th>Treatment reagent</th>
<th>Morphology</th>
<th>Dimensions in Å</th>
<th>Molar H₂O/Al₂O₃ 600 °C Calc.</th>
<th>Calc. (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃</td>
<td>medies</td>
<td>100-150</td>
<td>1000-3000</td>
<td>1.45</td>
</tr>
<tr>
<td>HCl</td>
<td>medies</td>
<td>100-200</td>
<td>500-2000</td>
<td>1.4</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>rods</td>
<td>200-300</td>
<td>500-1000</td>
<td>1.3</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>grouped lamell. 100-150</td>
<td>150-200</td>
<td>25</td>
<td>1.35</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>distimet</td>
<td>300-700</td>
<td>300-700</td>
<td>1.15</td>
</tr>
</tbody>
</table>

According to ALCOA carbonization process, [12] at 50-150 gpl caustic Na₂CO₃ concentration and 0.5-0.8 A/C ratio, pregnant liquor is carbonized in a well-stirred reactor (850 rpm) by CO₂ gas. Depending on the pH value after carbonization different crystalline phases can be precipitated:

- pH 8.5-10.2 dawsonite
- pH 10.4-10.7 amorphous pseudo-boehmite
- pH 12 gibbsite.

Temperature of the reaction has a decisive influence on properties (grain size, surface area etc.) of the product. Particle size versus temperature and holding time is plotted in Figure 2.2-11.

Basic material of very high quality active aluminas (specific surface area: 300-500 m²/g, Na₂O content 0.03 - 0.10 %) can be produced by the above technology. The only disadvantage of this process is the low (30-50 kg/m² Al₂O₃) liquor productivity.

Main advantages of the pseudo-boehmite production comparing to the other technologies are the following:

- extremely high specific surface area of the products,
- high purity of the products,
- very good handling properties of hydroxide (filterability, washability),
- high porosity of the product,
- pore size can be influenced in recrystallization phase (this is very important for catalysts and catalyst supports).

![GEL CRYSTAL SIZE VARIATION](image)

Figure 2.2-11

Particle size vs. temperature and holding time at carbonization

2.2.3.4 Shaping

Adsorbents are used in different form (powder, pellets, balls, tablets, shaped by extrusion press etc.).

In case of powder type adsorbents the most important properties are as follows:
- grain size distribution,
- bulk density ("loose"),
- bulk density ("tapped"),
- static adsorption capacity,
- specific surface area,

and in case of lumpy and shaped adsorbents:
- shape,
- size,
- wear resistance,
- compression strength,
- thermal stability,
- pore size, pore size distribution,
Methods used for shaping

Shaping by extrusion press

Amorphous hydroxides usually are shaped by screw or piston type extrusion presses. Initial gel is handled mechanically by addition of water and any peptizator (diluted solution of oxalic acid, nitric acid, formic acid etc.), after mechanical handling it is extruded, dried and activated.

Drop method

The initial amorphous material is partially dissolved (in mild acidic solution) and the suspension is dropped into the so-called precipitator bath (e.g. NH₄OH solution) through an oil layer used for ball formation. The small balls will be solidified in precipitator bath than washed, dried and activated.

Forming of granulates

This method is used first of all in case of processing gibbsite-based adsorbents (basic material: gibbsite from Bayer-cycle).

Initial material is ground before and by adding water and additives [Mg(NO₃)₆H₂O, Al(NO₃)₃.9H₂O etc.] for increasing strength it is handled in rotating plate or drum for ball formation.

2.2.4 Specialty calcined aluminas

Specialty calcined aluminas can be characterized by high α-Al₂O₃ content (more than 70 %), high density and hardness, different grain size and purity (for different purposes). The main characteristic properties of this product line are summarized in Table 2.2-7.
Table 2.2-7
Chemical and physical properties of specialty calcined aluminas

<table>
<thead>
<tr>
<th>Soda content</th>
<th>Normal</th>
<th>Intermediate</th>
<th>Low</th>
<th>High purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.3-0.6</td>
<td>0.15-0.30</td>
<td><0.1</td>
<td>2 ppm</td>
</tr>
<tr>
<td>SiO₂</td>
<td>≈ 0.04</td>
<td>≈ 0.04</td>
<td>≈0.04</td>
<td>4 ppm</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>≈ 0.02</td>
<td>≈ 0.02</td>
<td>≈0.02</td>
<td>2 ppm</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>99.2</td>
<td>99.5</td>
<td>99.7-99.9</td>
<td>99.99</td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ Al₂O₃ %</td>
<td><70</td>
<td>≈ 95</td>
<td>95-100</td>
<td>≈ 100</td>
</tr>
<tr>
<td>BET surface area m²/g</td>
<td>0.3-5</td>
<td>0.3-5</td>
<td>0.3-5</td>
<td>5-12</td>
</tr>
<tr>
<td>Ultimate Crystal size μm</td>
<td>0.3-5</td>
<td>0.3-5</td>
<td>0.3-5</td>
<td>0.1-1</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>3.9-3.95</td>
<td>min 3.95</td>
<td>3.96-3.98</td>
<td></td>
</tr>
<tr>
<td>Particle size depends on requirements</td>
<td>0.3-5 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₅₀ (Ground Al₂O₃) μm</td>
<td>1-5</td>
<td>1-5</td>
<td>0.3-0.5</td>
<td></td>
</tr>
<tr>
<td>Pressed Bulk Density g/cm³</td>
<td>1.8-2.20</td>
<td>2.25-2.40</td>
<td>2.6-2.25</td>
<td></td>
</tr>
<tr>
<td>Fired Density g/cm³</td>
<td>≈3.7-3.05</td>
<td>≈3.8-3.6</td>
<td>>3.9</td>
<td></td>
</tr>
<tr>
<td>(1600 °C/2h, 1.25%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO+1.25SiO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Shrinkage %</td>
<td>≈24-10.5</td>
<td>≈ 20.5-14</td>
<td>14-18</td>
<td></td>
</tr>
</tbody>
</table>

Ceramic Reactivity: It depends on grindability (d₅₀ after grinding in the alumina) and soda content in the alumina and pressure of forming of ceramic and temperature of calcination (1500-1700 °C) of ceramic.

Field of application is wide including glass industry, abrasives and polishing, refractories, electrical, electronic and mechanical ceramics etc. In the literature [1] products are categorized according to soda content and median crystal size. The requirements of various application fields for median grain size and Na₂O content are shown in Figure 2.2-12.
The largest field of application of the specialty calcined aluminas is the ceramic industry. Al₂O₃ content of the so-called Al₂O₃-based ceramic products is more than 80 %. As it is shown in Figure 2.2-12 low (<0.1 %) Na₂O containing basic material is needed for production of electronic ceramics, spark-plugs, insulators, hi-tech refractories etc.

The alkali content of the basic materials decreases specific resistance, strength and life-time of the products.

Other important property of the aluminium oxides used in this field is the ceramic reactivity. Ceramic reactivity can be characterized by density and shrinkage of the test-piece sintered under standard conditions.

Aluminas, reaching 3.8-3.95 g/cm³ density, without additives, at a sintering temperature lower than 1650 °C, are nominated as thermally reactive aluminas [30].
The most important properties required in different application fields can be developed by the following processes:

- high temperature calcination,
- calcination in presence of mineralizers,
- decrease of the impurity (mainly Na₂O) content,
- grinding.

2.2.4.1 High temperature calcination

Quality and reactivity (fired density and shrinkage) of the ceramic aluminas must be constant. Reactivity and other properties of the aluminas are highly influenced by parameters of calcination.

Higher temperature (1100-1300 °C) is applied at the calcination of ceramic aluminas than in case of smelting grade aluminas. α-Al₂O₃ content increases and specific surface area decreases by increasing calcination temperature. The crystal size of α-Al₂O₃ is 1-2 µm at mild calcination and by increasing temperature of calcination it can reach 10-15 µm.

The fired density is influenced by the granulometry of α-Al₂O₃ as well (in case of finer α-Al₂O₃ density is higher) [31], that is why α-Al₂O₃ is ground before sintering. Grinding is influenced by primary crystal size, because at the grinding, agglomerates are broken only. Practically, primary crystal size is the limit of grindability. The so-called super-fine grinding can be realized only under special conditions (special grinding method, additives, high energy consumption etc.).

Grindability of α-aluminas used for producing of Al₂O₃-based ceramics should be constant (maximum fluctuation of d₅₀ after grinding may be ± 0.1-0.5 µm). Fluctuation in shrinkage should be less than ± 1-2%. The so-called "green density" of the ground and pressed alumina depends on the calcination temperature, it is increasing with increasing calcination temperature (at the same granulometry), that is why the shrinkage during sinter process is lower in case of higher degree of calcination. These strict requirements can be ensured only by careful, constant calcination of constant quality alumina hydrate (constant granulometry, structure, impurities etc.). Quality control system of Showa Denko K. K. is shown in Figure 2.2-13. Specialists of Showa Denko have developed a rapid measuring method for control of calcination [32]. They put 6 g ungrounded alumina into 20 mm φ mold, pressurize it at 300 kp/cm² and measure the bulk density (the unground powder pressed bulk density). They verify that there is a connection between primary grain size of α-alumina (calcination degree) and the ungrounded powder bulk density. The relationship is shown on Figure 2.2-14.
Figure 2.2-13
Quality control items of alumina for ceramics
(see Chapter 3.1)
2.2.4.2 Application of mineralizers

Transformation temperature of α-Al$_2$O$_3$ can be decreased by using mineralizers.

The most frequently used mineralizers are as follows: AlF$_3$, NH$_4$F, MgF$_2$, NH$_4$Cl, (NH$_4$)$_2$HPO$_4$, H$_3$BO$_3$, CaF$_2$, MgF$_2$. Different mineralizers are added to the alumina hydrate in a quantity of 0.2-2%. For instance addition of 1% AlF$_3$ decreases the α-Al$_2$O$_3$ transformation temperature by 200 °C. Mineralizers have an influence on shape, primary crystal size and growth rate of α-Al$_2$O$_3$ crystallites. In the literature, two theories can be found for mineralizing mechanism.

- Solid phase mechanism: Na$_2$O in gibbsite comes out to the surface of alumina during calcination. This Na$_2$O reacts with HF and AlF$_3$ and becomes molten salt of AlF$_3$.4NaF. α-Al$_2$O$_3$ crystal can be grown by the dissolution of transition alumina or fine α-alumina into the melt and precipitation from the melt.

- Vapour phase mechanism: thermodynamically, vapour phase AlOF is not stable, however, it can be an intermediate compound which transforms immediately to α-Al$_2$O$_3$.

![Figure 2.2-16](image-url)

Figure 2.2-16

Relationship between the size of ultimate crystals of alumina and pressed bulk density of ungrounded powder.
2.2.4.3 Contaminants decreasing

In case of special aluminas used as basic materials of ceramic products, Na₂O is the most harmful impurity which should be decreased. The following methods are used for decreasing the Na₂O content:

- Decreasing the Na₂O content of the alumina hydrates (gibbsite, boehmite) before calcination according to the methods written earlier.

- ALCOA has developed a process for producing low alkali containing boehmite. Main parameters of precipitation are as follows:

 caustic Na₂O conc.: 111-123 gpl
 initial (Na₂O/Al₂O₃) molar ratio: 1.6-1.4
 quantity of the (boehmite) seed: 100 gpl
 temperature of crystallisation: 115-145 °C

 According to this method fine-disperse, high purity alumina (99.9% Al₂O₃) can be gained after calcination [33].

- Some of the mineralizers (H₃BO₃, AlF₃ NH₄Cl) used at high temperature calcination help to decrease the Na₂O content at temperature higher than 1100 °C. Using these mineralizers one part of the Na₂O is evaporated during calcination and the other part becomes washable. Mechanism of the above process is not cleared yet.

2.2.4.4 Grinding

For increasing reactivity of ceramic aluminas grinding is applied by producers or by users. Ball mills, vibrating mills and air jet mills are applied for grinding. Energy consumption of this process is quite high. Details of the grinding are not treated in this lecture.

References

2.3 PRODUCTION OF ZEOLITE IN AJKA

Z. Balogh, Gy. Baksa, G. Szalay,
F. Válló, M. Tóth-Gyutai, I. Szabó, R. Jelinkó

2.3.1 Zeolites in the industry

2.3.1.1 General description of zeolites

Zeolites belong to the group of water-containing crystalline framework silicates.

Naturally occurring zeolites were first noted two centuries ago [1].

Natural zeolites, one of the many types of adsorbents investigated, showed the most promise. However, their scarcity and high degree of chemical and physical variability made the use of natural zeolites in commercial separation processes impractical. Recognizing both the limitations of the natural minerals and the potential of zeolite-type materials, Union Carbide set out to synthesize the pure zeolites and to develop economical methods of producing them. Since then, the continuously increasing number of industrial applications has resulted in substantially increased production capacity and the introduction of a large variety of zeolite products.

The most important industrial uses of synthetic zeolites are:

- detergent builders
- adsorbents
- catalysators.

2.3.1.2 Crystal structure

Zeolites have the basic formula:

\[\frac{M_2/nO}{n} \cdot Al_2O_3 \cdot X SiO_2 \cdot y H_2O \] \hspace{1cm} (1)

where \(M \) is a cation of \(n \) valence.

Many zeolite species, differing in chemical composition, crystal structure and properties, are known. Among the types that have been found the most commercially useful are zeolite A and zeolite X/Y and inside of these the Type 4A and Type 13X which have the following formulas:
In both materials the sodium ion can be exchanged to form other useful products.

The fundamental building-block of zeolite crystal structure is a tetrahedron of four oxygen anions surrounding a smaller silicon or aluminium cation. The sodium ions or other cations serve to make up positive charge deficit in the alumina tetrahedra. Each of the four oxygen anions is shared in turn, with another silica or alumina tetrahedron. A two dimensional view of the aluminosilicate framework is shown in Figure 2.3-1.

Zeolite A and zeolite X/Y structures consist of aluminosilicate cubo-octahedrons, which are connected to one another via oxygen bridges and form large adsorption cavities. The cavities are connected to one another by channels of exactly defined diameter, the so-called pores. Depending on the arrangement of the cubo-octahedrons, we either get the "small-pore" zeolite A or the "wide-pore" Zeolite X/Y (Figure 2.3-2). An addition possibility of varying the pore diameter results from the fact the alkali or alkaline earth ions in the lattice are exchangeable [2].
2.3.1.3 Zeolites as detergent builders

The sodium cations reside in the pore and in the central cavity of the zeolite structure and are free to be exchanged for other cations. This character gives zeolite its special properties as a detergent builder [3, 4].

The major benefit of zeolite is the high calcium exchange capacity. When a zeolite crystal is placed in water containing hardness ions, calcium diffuses into the crystal and replaces two sodium ions to maintain charge balance. Hence the water is softened and the detergent does a more effective job of washing the clothes.

Zeolite A is a free-flowing white powder. The particle size has been optimized to give the best possible zeolite performance in detergents. The mean particle size is generally 4-6 microns.

Additional important properties of zeolite are its health and safety aspects: zeolite is safe from both human and environmental standpoint.

Illustrating effectiveness of zeolite in removal of hardness ions Figure 2.3-3 shows the results of an experiment. It is seen that calcium removal is much better than that of magnesium. That is why many formulations contain a co-builder with zeolite to
provide complete removal of both calcium and magnesium. This co-builder may be the conventional sodium-tripoliphosphat (STPP) or zeolite X.

![Graph showing calcium and magnesium removal over time](image)

Figure 2.3-3

Hardness removal by Zeolite NaA

- **Initial hardness:** Ca = 80 mg CaCO₃ / l
- Mg = 40 mg CaCO₃ / l
- **Zeolite concentration:** 0.06 %
- **Temperature:** 104 °F (40 °C)

The calcium removal performance of zeolite compared with other major builders is shown in Figure 2.3-4.
It can be seen that the performance of NTA, STPP and zeolite are essentially equal.

2.3.1.4 Zeolites and adsorbents

Synthetic zeolites are high quality adsorbents which are suitable for a variety of applications. Their outstanding properties are due to the characteristics of their structures [2].

Large cavity volume and large inner surface area result in high adsorption capacity. The fact that the pore diameters are absolutely uniform means that it is possible to make a clear-cut separation of different molecules on the basis of differing molecular sizes (molecular sieve effect). The strong electrical fields inside the cavities also make it possible to separate mixture of adsorbed molecules due to differences in polarity or polarizability [5].

Zeolites of type A and X can be used successfully in the following applications:

- Drying of fluids (gases and liquids), i.e., the removal of water down to extremely low residual levels
- Purification of fluids, i.e. removal of other adsorbable impurities to extremely low residual levels
- Separation of gas mixtures, i.e., breaking them down into individual components, which can be obtained with a high level of purity.

Zeolite molecular sieves retain adsorbates by strong physical forces rather than by chemisorption [1].

Adsorption on zeolite molecular sieves is characterized by a Langmuir-type isotherm, where the amount of a given compound adsorbed increases rapidly to a saturation value. An example is shown in Figure 2.3-5 for adsorption of water vapour on zeolite A compared with other adsorbents.

![Figure 2.3-5](image)

Figure 2.3-5
Water vapour adsorption at 25 °C
(Equilibrium data)
1. Molecular sieve type A
2. Silica gel
3. Activated alumina

2.3.2 Production of zeolite in the alumina plant

2.3.2.1 An individual procedure connected with the Bayer cycle

Developing work to produce synthetic zeolite started in the Ajka Aluminium Company in 1987. Basic procedure was given by Research
Institute for Technical Chemistry of Hungarian Academy of Sciences in Veszprem.

During the laboratory tests (in bigger size) several types of materials originated from Bayer cycle of alumina plant were proved as alumina sources for zeolite synthesis. A particular kind of sodium-aluminate liquors which is a by-product of the Bayer process was found to be the best starting material of the zeolite production.

The Ajka procedure is closely connected with the alumina production line: aluminate liquor, water, steam are supplied, mother liquor and washing liquors of zeolite process are accepted by the alumina plant.

Sodium aluminate liquor for zeolite reaction is produced in the precipitation tanks of alumina plant after crystallizing of aluminium-hydroxide, therefore the capacity of the plant will not be reduced by zeolite production.

Main advantages of the zeolite producing system combined with Bayer cycle are:

- investment costs of a zeolite plant are decreased by 10-20 %
- production cost of zeolite is reduced by 25-30 %.

2.3.2.2 Production of zeolite detergent

Main product of Ajka zeolite plant is detergent powder type 4A. It is produced in a gel process in which an aluminosilicate gel is first produced by reacting a mixture of sodium aluminate and sodium silicate solutions in an aqueous system. The gel is then heated to crystallize the zeolite. Careful control of reaction composition and crystallization conditions is required to minimize impurities and produce a product of the proper particle size. Following crystallization, the zeolite crystals are filtered, washed to remove excess reactants and spray dried.

The outline drawing of zeolite detergent production is showed in Figure 2.3-6. Quality of Ajka zeolite powder is similar to some European producers' products. The most important properties of zeolite are Ca-ion exchange capacity and the particle size distribution. The usual value for the former one is 160-175 mg CaO/g zeolite, for the latter 1 µm to 10 µm. The Ajka product has got about 170 mg/g ion exchange capacity and 3-5 µm of mean crystal size. Main physical and chemical characteristics of Ajka product is shown in Table 2.3-1.
Figure 2.3-6
Production of zeolite NaA powder

Table 2.3-1
Characteristics of EZOLUM-P

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristallinity (%)</td>
<td>min. 95</td>
</tr>
<tr>
<td>Reflectance (%)</td>
<td>min. 95</td>
</tr>
<tr>
<td>Ca-ion exchange capacity</td>
<td>170</td>
</tr>
<tr>
<td>(mg CaO/g anhidrous zeolite)</td>
<td></td>
</tr>
<tr>
<td>Chemical composition (%)</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>17-19</td>
</tr>
<tr>
<td>SiO₂</td>
<td>31-34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>28-30</td>
</tr>
<tr>
<td>L.O.I. (1 h at 800 °C) (%)</td>
<td>20</td>
</tr>
<tr>
<td>Impurities (ppm)</td>
<td></td>
</tr>
<tr>
<td>Fe (total)</td>
<td>max. 250</td>
</tr>
<tr>
<td>Pb</td>
<td>max. 3</td>
</tr>
<tr>
<td>As</td>
<td>max. 1</td>
</tr>
<tr>
<td>pH-value (in suspension of 10 %)</td>
<td>11.5</td>
</tr>
<tr>
<td>Medium crystal size (d₅₀) (µm)</td>
<td></td>
</tr>
<tr>
<td>Residue on sieve 45 µm (%)</td>
<td>max. 0.4</td>
</tr>
<tr>
<td>Bulk density (kg/m³)</td>
<td>350-450</td>
</tr>
</tbody>
</table>

The 4A zeolite powder produced in Ajka is used by laundry detergent producers in Austria, Germany and Switzerland. The product stored after drying in silo is filled into bags and silo camion or tank car and delivered on road or by rail.
2.3.2.3 Development of zeolite adsorbents

A kind of zeolite adsorbents has been developed on 4A zeolite powder. It is processed in rotary granulating drums, mixing the zeolite powder with binder material and water. Wet granulates are dried and then activated in a shaftkiln. The warm product is packaged hermetic in polyethylene bags. Outline of the process is shown in Figure 2.3-7.

![Outline of zeolite producing process](image)

The product consist of spherical beads or balls with diameter of 2-3 mm.

In order to 4A pore size of zeolite NaA it is extremely suitable to adsorbeate water molecules. Ajka hygroscopic zeolite adsorbent has a large water adsorption capacity. Properties of zeolite granulates can be seen in Table 2.3-2.

Product of the Ajka pilot plant is used for drying air in insulating glasses and during protection of equipments. Adsorbed water molecules are desorbed by heating and they leave zeolite crystals in the same chemical state as before adsorption, that is zeolite adsorbent can completely be regenerated.

Zeolite granulates have also been used for drying organic liquid and as filler material in fire proof doors.
Table 2.3-2
Characteristics of ZEOLOW-G

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape:</td>
<td>spherical grain</td>
</tr>
<tr>
<td>Particle size:</td>
<td>1.0 - 2.5 mm</td>
</tr>
<tr>
<td></td>
<td>2.5 - 3.5 mm</td>
</tr>
<tr>
<td>Bulk density:</td>
<td>0.6 - 0.7 kg/dm³</td>
</tr>
<tr>
<td>Density:</td>
<td>1.5 - 1.6 kg/dm³</td>
</tr>
<tr>
<td>Zeolite content:</td>
<td>70 - 80 %</td>
</tr>
<tr>
<td>Binder content:</td>
<td>20 % max.</td>
</tr>
<tr>
<td>Moisture content:</td>
<td>1 % max.</td>
</tr>
<tr>
<td>Colour:</td>
<td>slightly pink</td>
</tr>
<tr>
<td>Temperature of regeneration:</td>
<td>400 - 500 °C</td>
</tr>
<tr>
<td>Adsorption capacity for water vapour:</td>
<td></td>
</tr>
<tr>
<td>In case of vapour saturated air:</td>
<td>23 - 28 %</td>
</tr>
<tr>
<td>In case of 55 % vapour-content:</td>
<td>13 - 17 %</td>
</tr>
</tbody>
</table>

2.3.2.4 Other developments of SiO₂ based materials

Connecting with renewing of products of alumina plant, several kinds of silica based materials have been developed in Ajka. Dissolving of solid sodium silicate will be realized. Recently, bought water glass solution has been used for production of zeolite and silica based materials.

A new procedure to produce X/Y zeolites in agitated tank has been developed in laboratory. Some types of zeolite A have been made by ion exchange in pilot size.

Silica filler material for rubber and plastic industry is being processed in pilot size to produce samples for users’ trials.

Forming methods are developed and proved to make products for different purposes from zeolite and silica. Products may be granulates, extrudates, pastes or shaped bodies with or without binder.

Direction of development of silica based materials is illustrated in Figure 2.3-8.
Figure 2.3-8
Direction of development silica based materials

Reference

2.4 PRODUCTION OF ALUMINIUM SULPHATE

T. Szalai

Aluminium sulphate is a compound of white colour with a slight yellowish or greyish tint at most, it comprises crystal water and is fairly water-soluble.

Composition of the technical crystalline aluminium sulphate corresponds to the formula below:

\[\text{Al}_2(\text{SO}_4)_{3.13.5-14.5} \text{H}_2\text{O} \] \hspace{1cm} (1)

Aluminium sulphate was shown at World's Fair in Paris in 1844 and was recommended to substitute for common alum i.e. potassium aluminium sulphate. Thus aluminium sulphate industry has been developed by the end of the last century. The first notable productive capacities have been established around 1900.

2.4.1 Areas of utilization

Main application area of crystalline aluminium sulphate is the paper industry. It represents an important auxiliary material for the paper production, i.e. it facilitates the agglutination of cellulose fibres when gluing paper.

The other major area of its application is water purification wherein aluminium sulphate is used as flocculent.

In addition, aluminium sulphate is used in producing printer's ink, in tanning leather, furthermore as mordant with dyeries and for stripping and deodorizing with the petroleum refining. It may also be considered as a basic material for the production of other aluminium compounds (e.g. aluminium, fused alumina, aluminium stearate, etc.). It is also used for preserving wood and adhesives (Table 2.4-1).

Table 2.4-1
Consumption of indigenous aluminium sulphate by industry branches 1990

<table>
<thead>
<tr>
<th>Industry branch</th>
<th>Consumption (t)</th>
<th>Distribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper industry</td>
<td>9.182</td>
<td>42.98</td>
</tr>
<tr>
<td>Water treatment</td>
<td>7.316</td>
<td>34.25</td>
</tr>
<tr>
<td>Others</td>
<td>4.862</td>
<td>22.77</td>
</tr>
<tr>
<td>Total:</td>
<td>21.360</td>
<td>100.00</td>
</tr>
</tbody>
</table>
On grading aluminium sulphate the Al₂O₃-content, free acid and iron content is specified in general.

For the case of pretentious consumption, e.g. in water purification the freedom from arsenic is further required. There are three kinds of aluminium sulphates generally in trade:

- commercial iron-free aluminium sulphate. (Min. 17 % of Al₂O₃-, max. 0.005 % Fe-content. This product can be manufactured by starting out from alumina hydrate; its main application areais the paper industry.)

- commercial crystalline aluminium sulphate. (Min. 17 % of Al₂O₃-, max. 0.5 % of Fe-content. It can be manufactured by starting out from low-iron aluminium oxide minerals; its main application areais the water purification.)

- the mixture of aluminium sulphate and iron sulphate. (Products obtained industrially by treating bauxite with sulphuric acid; its main application areais the sewage purification.)

Indigenous stipulations for the quality of aluminium sulphate are laid down in two standard specifications.

Quality stipulations for the aluminium sulphate of industrial use are given in (Hungarian) standard specifications MSz 1013-78. The characteristics of Hungarian products aresummarized in Table 2.4-2.

Table 2.4-2

<table>
<thead>
<tr>
<th>Composition figures</th>
<th>Grade I (%)</th>
<th>Grade II (%)</th>
<th>Characteristic of NOTIM product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminimoxide (Al₂O₃) content</td>
<td>17.0</td>
<td>15.8</td>
<td>17.0 - 17.5</td>
</tr>
<tr>
<td>Free acid (H₂SO₄) content</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Alkalinity (referred to Al₂O₃)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2 - 0.4</td>
</tr>
<tr>
<td>Iron (Fe-content)</td>
<td>0.035</td>
<td>0.035</td>
<td>0.004 - 0.006</td>
</tr>
<tr>
<td>Water insoluble part</td>
<td>0.3</td>
<td>0.3</td>
<td>0.08 - 0.120</td>
</tr>
</tbody>
</table>

Quality stipulations for aluminium sulphate for the use of water purification are given in the standard specification MSz 16975-83 as it is shown in the Table 2.4-3.
Table 2.4-1
Quality stipulations for aluminium sulphate for the use of water purification

<table>
<thead>
<tr>
<th>Composition</th>
<th>Standard stipulations (ppm)</th>
<th>Characteristic figures of MOTIM product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic content</td>
<td>max. 0.001</td>
<td>max. 3 - 5</td>
</tr>
<tr>
<td>Cyanide content</td>
<td>max. 0.001</td>
<td>max. 0.01</td>
</tr>
<tr>
<td>Mercury content</td>
<td>max. 0.0001</td>
<td>max. 0.01</td>
</tr>
<tr>
<td>Cadmium content</td>
<td>max. 0.0005</td>
<td>max. 0.2</td>
</tr>
</tbody>
</table>

2.4.2 Short review of aluminium sulphate manufacturing process

Aluminium sulphate may be produced by starting out from two kinds of basic materials:
- from aluminium oxide bearing ores, as well as aluminium silicate easy to disclose
- from alumina hydrate.

Aluminium sulphate manufacturing processes include two main stages:
a. production of aluminium sulphate solution
b. production of crystalline aluminium sulphate from the solution.

In addition to the two main manufacturing stages, occasionally deironing of the solution, crushing and classification of the solution, crushing and classification of the final crystalline product is also performed.

2.4.2.1 Production of aluminium sulphate from aluminium ores

As a raw material, primarily bauxite of low iron oxide content, clay or china clay can be taken into consideration. Prior to the digestion with sulphuric acid raw materials are usually heat-treated. In the course of heat-treatment dewatering and rearrangement of aluminium silicates at different rate depending on the parameters of heat-treatment takes also place and as a result, hardly digestible aluminium silicates convert into silicon dioxide of little acid solubility and into more or less acid-soluble aluminium oxide. It can be stated, in general, that the heat-treatment within the range of 500-900 °C improves digestibility. Heat-treatment takes place in the presence of additives (e.g. Na₂CO₃, NaOH) to form sodium silicates.

Heat-treated raw material is treated with sulphuric acid of various concentration depending on various quality stipulations.
imposed on the aluminium sulphate product [2, 3]. The so-called raw sulphate is obtained by treating with concentrated sulphuric acid. Though this material comprises all the impurities of the starting material, still it can be used for water purification purposes.

In case of more pretentious applications digestion is carried out with medium-concentrated 40-60 % sulphuric acid and the unextracted residue is removed from the aluminium sulphate solution by settling or filtration.

In more up-to-date plants digestion is performed continuously in series-connected reactors, dissolving vats. The separation of aluminium sulphate solution from unextracted residue is performed in series-coupled settlers and counter-current washing is adopted. Digestion efficiency can be increased by the addition of hydrogen fluoride or hydrogen silicofluoride [4].

If a product of higher purity is requested deironing is performed prior to evaporating the solution. Ondeironing is performed. In case of digesting with particularly dilute sulphuric acid the aluminium sulphate solution may namely comprise considerable portion of the iron content of basic material i.e. of bauxite.

Several processes have been elaborated for the removal of iron content:

Some more familiar methods are as follows:

- iron precipitation with cyanides
- separation of iron (III) sulphate by hydrolysis
- crystallizing aluminium sulphate from the iron bearing solution (indirect method)

The process also nowadays most commonly used for deironing is performed by means of cyanides. Here iron content of the aluminium sulphate is either oxidized to the III-valency state then potassium ferrocyanide is added to precipitate Berlin blue, or it is reduced to the II-valency state and by adding potassium ferricyanide the resulting Turnbull blue precipitate is obtained. Solids are removed from the deironed solution by filtration. Conditions of precipitation are of high importance to the filterability.

Crystallization or rather solidification of the hot, concentrated aluminium sulphate solution is carried out even to-day on 4-8 ton capacity trays fitted mostly with an acid-proof lining (measontry or aluminium sheets). Aluminium sulphate is poured onto the trays to form a 100-200 mm layer. Here on cooling the entire melt solidifies.

Formerly solid aluminium sulphate from the trays has been removed manually, however, nowadays this procedure is more and more mechanized. Final product is traded in tabular form or is classified after crushing depending on further utilization.
2.4.2.2 Production of aluminium sulphate from alumina hydrate

This method is considerably more simple and unpretentious as to the equipment than the technologies elaborated for aluminium ores because the procedure for filtering insoluble impurities and that of deironing is omitted. For aluminium sulphate production from alumina hydrate several processes have been similarly elaborated. With the recognized procedure, alumina hydrate is repulped with water then fed to a digester with a lead or acid-proof enameled lining. Here concentrated sulphuric acid is added and the slurry is allowed to boil by the use of direct or indirect steam. Resulting aluminium sulphate solution is then evaporated to obtain 17-18 % of aluminium content. Concentrated solution is allowed to crystallize in the tray solidifiers mentioned above and is further processed [5].

2.4.2.3 Technology of the aluminium sulphate plant unit of MOTIM

The aluminium sulphate plant unit of MOTIM also adopts essentially the recognized batch process outlined above.

Aluminium sulphate is manufactured in reactors provided with acid-proof lining by suitable admeasurement of basic materials (alumina hydrate, sulphuric acid). Reaction heat generated during the dissolution of alumina hydrate in sulphuric acid is sufficient for the evaporation of aluminium sulphate solution to the required concentration. Thus, by optimum dewatering, after the accomplishment of dissolution reaction of alumina hydrate a product of required composition, i.e. aluminium oxide content can be achieved. After an adequate holding time the resulting aluminium sulphate solution is allowed to pour through the conical bottom of the reactor into the cooling trays for solidification. Solidified aluminium sulphate is picked up by shovel pick-up trolley trucks and crushed in hammer mills.

Ground product is fed to the classifying sieve to produce three kinds of grain fractions.

2.4.3 Basic materials used

2.4.3.1 Technical grade sulphuric acid

Quality stipulations for the technical grade sulphuric acid are comprised in the standard specification MSz. 902-71.

The composition of sulphuric acid used in the aluminium sulphate plant unit of MOTIM, according to the contract for supply made with "Tiszamenti Végyművek" reads as follows:

- sulphuric acid content: 93.5 - 95.0 %
- iron content: max: 0.005 %
2.4.3.2 Aluminium trihydroxide

Quality stipulations for alumina hydrate in the manufacturing technology read as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive moisture</td>
<td>11.0-12.0 %</td>
</tr>
<tr>
<td>Al₂O₃ content</td>
<td>57.5-58.5 %</td>
</tr>
<tr>
<td>Iron content</td>
<td>0.013-0.015 %</td>
</tr>
</tbody>
</table>

2.4.4 Review of technologies for manufacturing aluminium sulphate

Besides the recognized technologies for manufacturing aluminium sulphate several other technologies have also been elaborated. According to one of Montecatini's methods alumina hydrate is treated in a revolving cylindric reactor at temperatures of 145-160 °C with sulphuric acid of adequate concentration to obtain a product of required aluminium oxide and water content after the accomplishment of dissolution reaction.

By the high-productivity process of Giulini there is a possibility to obtain a product with Al₂O₃ content of as high as 20 %. Alumina hydrate is repulped with water then fed to a pressure-tight reactor provided with an agitator. Here sulphuric acid of calculated amount and concentration heated up to 40-50 °C is quickly added to the slurry to get it dissolved. Dissolution reaction takes place at temperatures of 170-180 °C within 10-12 minutes.

In the case of tray solidification characteristic of the recognized processes, processing of product i.e. discharging of tray is a labour-intensive operation. Therefore, in majority of aluminium sulphate producing plants the stepwise production of aluminium sulphate and the subsequent continuous crystallization i.e. solidification is the characteristic feature of operation.

To make solidification procedure continuous there are solutions herein aluminium sulphate is sprayed into a revolving drum thus obtaining granular final product (Boliden process).

Nowadays the most up-to-date operation for a continuous solidification is the adoption of the Sandvik-type cooling band. The endless conveyor belt made up of steel or rubber travels over a cooling vat consisting of open compartments. Bottom side of the belt facing the vat is in constant contact with cooling water circulating in the vat, thus good heat transfer can be achieved. An about 8-12 mm thick layer of aluminium sulphate solution is made on the top side of the belt where it gets solidified.

Continuous solidification can similarly be achieved by atomizing crystallizing process. According to this process hot aluminium sulphate solution is atomized into a 10-15 m high crystallizing
tower. Falling material solidifies and gets onto a water-cooled metal band at the bottom of the tower. Post-cooling of aluminium sulphate takes place on the metal band.

Summarizing the manufacturing technologies start out from aluminium ores and alumina hydrate, respectively, as the basic materials, have been detailed formerly.

References

2.5 DEVELOPMENT AND PRODUCTION OF NON-METALLURGICAL GRADE ALUMINAS IN HUNGARY

M. Tóth, J. Zábrészki

2.5.1 The largest special alumina producer in Central-Eastern Europe - the ALOXID Ltd.

In Central-Eastern Europe these are the affiliates of HUNGALU Group dealing with the manufacturing of special aluminas:

- HUNGALU MOTIM Ltd. has been producing different products for refractory industry since many years
- HUNGALU Ajka Aluminium Ltd. deals with grinding of hydrates, precipitation of special hydrates and production of zeolites
- HUNGALU ALOXID Ltd. produces activated aluminas and special calcined aluminas.

In a narrow sense idea of special aluminas (non-metallurgical grade aluminas) generally means the specially calcined oxides. These kinds of products are manufactured in Hungary or in Central-Eastern Europe at Almásfűzító Alumina Ltd. (ALOXID Ltd.), that's why we can claim Almásfűzító to be the base of the special alumina production of this field.

The aim of this lecture is to overview the production of activated and special calcined aluminas through the activity of HUNGALU ALOXID.

Almásfűzító Alumina Ltd. (abbreviated as ALOXID Ltd.) is an affiliated company of HUNGALU and successor of the Almásfűzító Alumina Plant belonging to the former Hungarian Aluminium Company.

The plant is located at the bank of Danube at about 80 kms from Budapest. It processes Hungarian bauxite with Bayer technology. Its capacity is about 300,000 tons/year. Recently the metallurgical grade alumina production has been decreased and our capacity converted for producing non-metallurgical grade special aluminas. The reality of this kind of activity is confirmed by the fact, that the research and development of different varieties of special aluminas have already been made for several decades, and a lot of patents and know-hows of the subject have been presented, a lot of types of trade marked products in large scale quantity have been put into circulation on the Western-European markets as well.

At ALOXID Ltd. both the production and the development activity is concentrated on two fields, namely:
- calcined special aluminas and their further processed varieties
 = ceramic aluminas - press powders - grinding balls
 = abrasive and polishing aluminas, pastes and waxes
 = high value refractory materials

- tabular alumina
- calcium aluminate cement
- activated aluminas
 = activated aluminas from Bayer-hydrate and formed (granulated) adsorbents and catalyst carriers made of these aluminas
 = alumina-hydroxides - not directly from Bayer-process (pseudoboehmite).

Amongst the listed activities of ours we are the strongest on the field of ceramic aluminas. In the 80-s our production capacity of this has been growing to some ten thousand tons/year. In other fields research and development works, introduction of new products onto the market are continuously going on.

We do not begin the presentation of our activity with our strongest side, but start out of the hydrate, corresponding to the system of special aluminas (Figure 2.5-1) applied all over the world.

Figure 2.5-1
Activated and calcined special aluminas
2.5.2 The production and development activity of ALOXID Ltd.

2.5.2.1 Activated aluminas (adsorbents, catalyst carriers)

In the field of catalyst carriers our activity, which at present consists mainly of development and introduction of products to market and in less measure of production, has two separate lines, namely (Figure 2.5-2):

- connected with Bayer technology (Bayer-hydrate line)
- alumina-gel line.

The Bayer-hydrate line

By Bayer-hydrate line we mean the production of catalyst carriers, whose raw material is the aluminium hydroxide arising from Bayer process. As it is known, a lot of adsorbents, catalysts and catalyst carriers belong to this group, but here we would like to mention only three of them (see Table 2.5-1: K-10, AG, α-Al₂O₃ ball) which are in the centre of our interest at the moment from the point of view of the production or the development.
Table 2.5-1
Activated aluminas under production and development

<table>
<thead>
<tr>
<th>Product</th>
<th>Under Production</th>
<th>Under Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Mark</td>
<td>K-10 AG</td>
<td>Experimental Product</td>
</tr>
<tr>
<td>Catalyst support</td>
<td></td>
<td>Pseudo-</td>
</tr>
<tr>
<td>Appearance extrudate</td>
<td>powder</td>
<td>ball</td>
</tr>
<tr>
<td>Chemical Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>0.3**</td>
<td>0.4-0.6"</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>0.03</td>
<td>0.05-0.06</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>0.03</td>
<td>0.03-0.04</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>9</td>
<td>3-6</td>
</tr>
<tr>
<td>XRD Analysis</td>
<td>(\Gamma\text{-Al}_2\text{O}_3)</td>
<td>(\Gamma\text{-Al}_2\text{O}_3)</td>
</tr>
<tr>
<td>e-Al(_2)O(_3)</td>
<td>boehmite</td>
<td>boehmite</td>
</tr>
<tr>
<td>Specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesh</td>
<td>mesh</td>
<td>mesh</td>
</tr>
<tr>
<td>Volume of (0.5-0.7) Pores***</td>
<td>0.3</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>(\phi \text{cm}^2/\text{g})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pore size 80-90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* other sizes available
** soda content may be reduced
*** Micromeritics Accu Sorb
**** produced not at ALOXID, only the raw material originates from here

K-10

At present the so called "commercial activated alumina", the K-10 (Table 2.5-1) is produced in industrial-scale on Bayer-hydrate base. Besides the main components, namely the gamma- and chi-aluminas this alumina contains large quantity of boehmite as well. It is manufactured in rotary kiln, that means a slow dehydration, so the achievable specific surface has an upper limit (=260 m\(^2\)/g). It is very well usable for a lot of different applications, and can be produced economically with relatively low prime cost. However there are fields of application, where
much bigger specific surfaces and porosity larger than 0.3-0.4 cm3/g are required. In this case we have two possible directions:

- Starting out of Bayer hydrate to change the conditions of dehydration, that is:
 - the manner, time and speed of heat transfer
 - the pressure and relative humidity of atmosphere
 - the grain size of starting material

- Producing aluminium hydroxide-gels.

We have a lot of pilot-plant scale experimental results for the first direction, so we succeeded in achieving a specific surface as high as 340 m2/g, and a total porosity of 0.6 cm3/g, however we have stopped the apparative development. At the same time we make an intensive development concerning aluminium hydroxide-gel.

Alumina used in the alkylation technologies

The enlarging and new establishing of alkylation plants have come to the front nowadays by the environmental protection efforts and the utilization of lead free petrol. In the alkylation by HF the treatment of product is made by alumina. Here the alumina doesn't work as adsorbent, but it concerns a chemical reaction.

The alkyl-fluorides are decomposed to olefines by aluminas, where in addition aluminium-fluoride and water arise.

Such an alkylation plant was built not long ago in Hungary as well [1]. This plant has been applying AG trade marked balls (Table 2.5-2) with good efficiency for many years.
Table 2.5-2

Characteristics of the AG adsorbent used in alkylation technologies

<table>
<thead>
<tr>
<th>Chemical properties</th>
<th>Physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>shape</td>
</tr>
<tr>
<td>%: 93-96</td>
<td>balis φ=3-5 mm</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>specific surface</td>
</tr>
<tr>
<td>%: 0.4-0.6</td>
<td>(\text{m}^2/\text{g})</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>bulk density</td>
</tr>
<tr>
<td>%: 0.05-0.08</td>
<td>(\text{g/dm}^3)</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>dynamic sorption</td>
</tr>
<tr>
<td>%: 0.03-0.04</td>
<td>%: 22-30</td>
</tr>
<tr>
<td>L.O.I. ((1100 , ^\circ\text{C}))</td>
<td>volume of pores</td>
</tr>
<tr>
<td>%: 3-6</td>
<td>(\text{cm}^3/\text{g})</td>
</tr>
<tr>
<td>(\text{P}_{50})</td>
<td>abrasion resistance</td>
</tr>
<tr>
<td>Å:</td>
<td>%: 50-70</td>
</tr>
<tr>
<td>static adsorption: (\text{E} , 01)</td>
<td>AlF(_3) adsorption</td>
</tr>
<tr>
<td>%: 2.5-3</td>
<td>AlF(_3) content at input</td>
</tr>
<tr>
<td>(\text{E} , 06)</td>
<td>%: 8-10</td>
</tr>
<tr>
<td>(\text{E} , 09)</td>
<td>%: 21-25</td>
</tr>
<tr>
<td>abrasion resistance</td>
<td>%: 100</td>
</tr>
</tbody>
</table>

Alpha-\(\text{Al}_2\text{O}_3 \) ball

The alpha-alumina catalyst carrier ball is a high strength porous ball-shaped catalyst carrier, ignited (sintered) at high temperatures, which can be applied in processes where:

- due to the fluid bed technology the carrier must be mechanically strong
- on the high surface gamma-\(\text{Al}_2\text{O}_3 \), just due to its high surface the residence time is probably longer, so the selectivity is worse
- at using other types of catalysts the water causes their decay or/sand sintering.

This is for example at:

- oxidative dehydrogenation of toluol
- dehydrogenation of alcohols
- hydrogenation of acetylene
- oxychlorination of methane.

Alumina-gel line

In certain petrochemical reaction, mainly in the hydro-treating area (hydrocarbon converting processes) such as catalytic cracking, dehydro-cracking, hydro-treating, reforming, isomerization, hydrogenation, dehydrogenation, oligomerization,
alkylation, dealkylation, demetallization, etc. the most widespread catalyst carrier is the alumina, showing the next characteristics:

- large specific surface
- wide pores
- high cumulative pore volume
- well defined pore distribution.

These features are present together mainly in the gamma and aluminas, made by activation of pseudoboehmite and bayerite.

The alumina-hydroxide gel and the pseudoboehmite are not unknown ideas amongst chemists. The alumina gel became well known by its medical applications, while the pseudoboehmite - which directed the attention of scientists to its uncertain structure, too - by catalyst base material utilization. The latter is the raw material of wide pore catalyst carriers utilized mainly in the petro-chemical industry, and combined with zeolites is the base of fluid crack catalysts as well.

The name "pseudoboehmite" was given by Calvet and others. After them its structure was investigated by numerous scientists, and it was many times prepared. On the basis of their works the pseudoboehmite can be defined as an intermediate stage in the ageing of gel, containing very small particles in it, to cause X-ray line broadening [2].

There is a lot of patents for its production. One group of them is the neutralization of sodium aluminate liquor by CO₂ gas.

As to its principle it is not a new process. The novelty is in its realization and in special purpose modification of its characteristics. At ALOXID Ltd. the carbonization of aluminate liquor has already been made within the large scale production of pharmaceutical gels, now by the modification of the process we are ready to produce catalyst carriers as well.

For this very reason a large laboratory scale pilot line has been established in order to examine the effects of technological parameters on the product features.

In order to obtain a material having well defined pore size distribution and specific surface it is very important to keep the following experimental parameters constant:

- the caustic-soda concentration
- the temperature
- the time of neutralization
- the pH change versus the time.

Properties of the pseudoboehmite produced in pilot plant and the one produced in large scale production line are very close to each other, however we are yet working on the perfection of the latter. Phase composition of the material consists of pure pseudoboehmite, there are no even traces of bayerite or gibbsite.
(Figure 2.5-3), its grain size is not characteristic, because it depends on the circumstances of spray-drying, but as shown on the SEM (scanning electron microscope) photos of Figure 2.5-4 the size of single crystals is about some tenths of micrometers. The mean pore diameter $p_{50} = 150 \, \text{Å}$ (Table 2.5-3).

The pseudoboehmite is only a raw material of catalysts. For its utilization as catalyst carrier or catalyst it must be formed (extruded, pelletized or granulated), activated, and simultaneously or after these impregnated with metals. So far we have not furnished yet for forming but had our experimental product tested by two famous catalyst producers. Both producers could make a catalyst satisfying the international requirements of this material which qualifies favourably both the raw material and the forming technology (Table 2.5-4).

Figure 2.5-3

X-ray powder diffraction pattern of pseudoboehmite
Figure 2.5-4
Morphology pseudoboehmite tested SEM

Table 2.5-3
Specific properties of pseudoboehmite

<table>
<thead>
<tr>
<th>Chemical analysis:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$O</td>
<td>%</td>
<td>0.02-0.07</td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>%</td>
<td>0.02-0.04</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>%</td>
<td>0.02-0.04</td>
<td></td>
</tr>
<tr>
<td>L.O.I.</td>
<td>%</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XRD analysis:</th>
<th>pseudoboehmite (see Figure 2.5-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface (B.E.T.) m2/g:</td>
<td>300-380</td>
</tr>
<tr>
<td>Volume of pores g/cm3:</td>
<td>0.7-1.5</td>
</tr>
<tr>
<td>P_{50} Å:</td>
<td>150-170</td>
</tr>
</tbody>
</table>
Table 2.5-4

Properties of catalyst carriers from Almásfüzíto pseudoboehmite

<table>
<thead>
<tr>
<th>Shape</th>
<th>extrudates</th>
<th>extrudates</th>
<th>extrudates</th>
<th>extrudates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size diameter</td>
<td>1.7</td>
<td>2.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Chemical analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>%</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>%</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>%</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XRD analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Volume</td>
<td>m³/g</td>
<td>0.60</td>
<td>0.57</td>
<td>0.66</td>
</tr>
<tr>
<td>PSO</td>
<td></td>
<td>82</td>
<td>123</td>
<td>82.0</td>
</tr>
<tr>
<td>Favourage</td>
<td></td>
<td>84.5</td>
<td>119</td>
<td>80.5</td>
</tr>
<tr>
<td>Specific surface</td>
<td>m²/g</td>
<td>248</td>
<td>170</td>
<td>236</td>
</tr>
<tr>
<td>Side crushing strength</td>
<td>kN/cm²</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Abrasion</td>
<td>%</td>
<td>0</td>
<td>0.9</td>
<td>-</td>
</tr>
</tbody>
</table>

2.5.2.2 Calcined special aluminas and their further processed varieties

As mentioned earlier, this activity of ALOXID Ltd. concerning non-metallurgical grade aluminas is its strongest side both from development and production point of view. Almost every kind of calcined special aluminas of almost every application fields are dealt with, and an efficient development activity in order to produce not only raw materials, but highly processed sophisticated products, too is deployed.

Calcined special aluminas are mainly applied in the following fields:

- ceramic and refractory industry
- abrasive and polishing material industry.

Ceramic and refractory aluminas and their further processed varieties

Categorisation, special features, and comparison of trade marked types of products of ALOXID Ltd. to other products being present on the market of this group of aluminas are dealt with in details here, however we have a lot of publications on the subject as well [3-8]. The characteristics of the three basic types are shown in Table 2.5-5.

Our G type, low soda-content alumina which was developed in the 80-s is used exclusively for spark plug production by three European factories.
Table 2.5-5
Special calcined aluminas produced by Almásfürító

<table>
<thead>
<tr>
<th>Soda content</th>
<th>Basic types</th>
<th>Normal Intermediate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade mark</td>
<td>T-1-Á-R*</td>
<td>T-1-Á-S*</td>
<td>G*</td>
</tr>
</tbody>
</table>

Chemical analysis

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O (max): %</td>
<td>0.30</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Fe₂O₃ (max): %</td>
<td>0.45</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>SiO₂ (max): %</td>
<td>0.035</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>Al₂O₃ %</td>
<td>99.2</td>
<td>99.5</td>
<td>99.7</td>
</tr>
<tr>
<td>L.O.I. %</td>
<td>0.1-0.2</td>
<td>0.1-0.2</td>
<td>0.05-0.15</td>
</tr>
</tbody>
</table>

XRD analysis

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al₂O₃ %</td>
<td>>90</td>
<td>>95</td>
<td>>95</td>
</tr>
<tr>
<td>β-Al₂O₃ %</td>
<td>well</td>
<td>detec-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ultimate crystal size μm

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B.E.T.) µm²/g</td>
<td>3-4</td>
<td>3-4</td>
<td>2-3</td>
</tr>
</tbody>
</table>

Specific gravity g/cm³

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Specific particle size μm

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average particle size μm**</td>
<td>30-45</td>
<td>30-45</td>
<td>30-60</td>
</tr>
</tbody>
</table>

Specific surface (B.E.T.) µm²/g

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-7</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Ceramic Reactivity***

<table>
<thead>
<tr>
<th></th>
<th>T-1-Á-R*</th>
<th>T-1-Á-S*</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fired density (1550 °C) g/cm³</td>
<td>3.6</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

*available in ground form as well
**determined by laser diffraction p.s. analyser Malvern Master Sizer
***after milling with additives, 10 g/20 mm³, pressed at 300

Ground aluminas

On the field of ceramic and refractory production the first step is generally grinding which requires a lot of energy and time. That's why these manufacturers - in order to decrease their first costs and modernize their technology - prefer buying of ground aluminas. In order to satisfy this requirement - and due to the fact, that grinding is cheaper in larger quantity and made with modern technology and that the quality is better controllable - producers of special aluminas are generally prepared for the necessary grinding of their products as well. There are some different methods of grinding. ALOXID Ltd. is furnished with air jet mills and ball-mills for grinding [6, 7]. All the aluminas shown in Table 2.5-5. are achievable in ground form as well, milled in Alpine 530 AF air jet mill. The characteristic features of the basic types depending on the grinding fineness are presented in Figure 2.5-5. In addition to these basic types, a
lot of other ones can be manufactured, too, according to the consumers' requirements, combining the characteristics of original aluminas and grinding parameters.

![Figure 2.5-5](image)

Figure 2.5-5
Granulometric properties of the ground alumina

Press powder and grinding ball production

The consecutive steps of ceramic technology shown in Figure 2.5-6 are well known. From this technological procedure more and more steps are adopted by alumina plants. One of the processes including all the steps of a ceramics manufacturing production is the manufacturing of the high alumina concentration grinding ball. This kind of manufacturing process has been started at ALOXID Ltd. The characteristics of high Al₂O₃ content grinding ball produced here are shown in Table 2.5-6.
The legal predecessor of ALOXID Ltd., namely the Almásfűzítő Alumina Plant had already produced abrasive and polishing aluminas, but the production and development of these products has stagnated for some years. At present some new experimental products have been put on the market (Table 2.5-7) having narrower grain size intervals than the earlier ones (monodisperse) and more varieties in superficial features.

![Diagram of the steps of ceramic technology](image)

Figure 2.5-6

The steps of ceramic technology

Table 2.5-6

Characteristics of the high alumina grinding ball

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition: Al$_2$O$_3$</td>
<td>%</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm3</td>
</tr>
<tr>
<td>Hardness (Mohs' scale):</td>
<td>cm3/g</td>
</tr>
<tr>
<td>Open porosity</td>
<td>%</td>
</tr>
<tr>
<td>Water absorption</td>
<td>25, 50, 70</td>
</tr>
<tr>
<td>Available size mm:</td>
<td>g/cm3</td>
</tr>
<tr>
<td>Crushing strength</td>
<td>MN/m2</td>
</tr>
</tbody>
</table>

Polishing aluminas and waxes
Table 2.5-7
Abrasive and polishing aluminas of ALOXID Ltd.

<table>
<thead>
<tr>
<th>Chemical analysis</th>
<th>TP-100</th>
<th>TP-112</th>
<th>TP-113</th>
<th>TP-114</th>
<th>TP-430</th>
<th>TP-445</th>
<th>TP-448</th>
<th>TP-511</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ %</td>
<td>min.99</td>
<td>min.99</td>
<td>min.99</td>
<td>min.99</td>
<td>min.99.4</td>
<td>min.99.4</td>
<td>min.99.4</td>
<td>min.99.5</td>
</tr>
<tr>
<td>MgO %</td>
<td>0.25-0.4</td>
<td>0.25-0.4</td>
<td>0.25-0.4</td>
<td>0.25-0.4</td>
<td>0.08-0.2</td>
<td>0.08-0.2</td>
<td>0.08-0.2</td>
<td>0.03-0.1</td>
</tr>
<tr>
<td>Fe₂O₃ %</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
<td>0.035-</td>
</tr>
<tr>
<td>Physical properties</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>Particle Size Distr.</td>
<td>20-40</td>
<td>0-1</td>
<td>15-40</td>
<td>0-1</td>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 63 μm %</td>
<td>20-40</td>
<td>0-1</td>
<td>15-40</td>
<td>0-1</td>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 45 μm %</td>
<td>30-60</td>
<td>0-1</td>
<td>15-40</td>
<td>0-1</td>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 20 μm %</td>
<td>1-5</td>
<td>8-20</td>
<td>0-1</td>
<td>0-1</td>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary crystal size μm</td>
<td>= 1</td>
</tr>
<tr>
<td>Bulk density g/l</td>
<td>900-1100</td>
<td>400-500</td>
<td>450-600</td>
<td>500-900</td>
<td>450-600</td>
<td>450-600</td>
<td>500-650</td>
<td>600-650</td>
</tr>
<tr>
<td>Degree of calcination</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Cut effect</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Polishing effect 7</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
</tr>
<tr>
<td>pH (10 % suspension)</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
</tr>
</tbody>
</table>

Tabular aluminas
This is a popular group of high-tech refractory materials. Its production needs a high level skill. The technology is generally strictly confidential. Cooperating with foreign firms the ALOXID has already produced some items of marketing quantity, which were tested and found to be satisfactory by its potential consumers.

References

2.6 CERAMIC ALUMINAS AND THEIR CHARACTERISTICS

M. Tóth, J. Zábráczki

2.6.1 Definition of ceramic aluminas, and their classification

A considerable part of non-smelter grade special calcined aluminas is used by the refractory and ceramic industry. Its quantity - depending upon the source of statistic data and the principle of classification - is about 1.5 million tons/year. The data's diversity in most cases is due to the fact that it's impossible to draw a line of demarcation between the refractory and the ceramic industrial products. In this field there are more than a hundred products of trade mark released by a good many manufacturers circulating on the market. The principle of their classification is similar to that of other special aluminas, namely:

- field of application
- typical properties
- production processes

2.6.2 Field of application

In accordance with destination and utilization purposes those lines of industry or product groups are specified, where the given aluminas are the sole raw materials or are used as more or less a substantial proportion of the raw material. The field of application is naturally in close correlation with the essential features of the aluminas, but the suitability - due to the differences in technology - cannot be generalized. The most important refractory and ceramic applications are listed in Table 2.6-1.
Table 2.6-1

Fields of application of calcined (ceramic) aluminas

<table>
<thead>
<tr>
<th>Quality grade</th>
<th>Field of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Na₂O content alumina (Na₂O %: 0.25-0.5)</td>
<td>Refractory industry: bricks, ceramic fibres, mortars cements, spirels, refractory oxide-cermics, mullites, firing auxiliary materials, coatings, glazes, filling materials, ceramic filters, sanitary and table porcelain wares, building ceramics, linings, grinding bodies</td>
</tr>
<tr>
<td>Intermediate Na₂O content alumina (Na₂O %: 0.1-0.25)</td>
<td>Refractory industry (see above), manufacturing of electro-porcelains: insulators, high voltage supporting insulators, spark plugs, oxide ceramics Corundum purpose alumina (Na₂O %: =0.2) (other impurities are also important Fe₂O₃, SO₃)</td>
</tr>
<tr>
<td>Low Na₂O content alumina (Na₂O %: ≤0.1)</td>
<td>Oxide ceramics, spark plugs, refractory mortars, cements, binding materials, electric insulators, high wear parts, grinding balls mill linings, technical ceramics, catalyst carriers Reactive aluminas as above, and cutting tools, mainly technical ceramics (engine components), substrates of micro electronics, biocermics High purity aluminas (Al₂O₃ % ≥ 99.9 - 99.99) Bio-cermics, translucent ceramics, telecommunication ceramics</td>
</tr>
</tbody>
</table>

2.6.3 Typical properties

Amongst the chemical impurities of the ceramic aluminas the Na₂O content is so important, that the classification of the alumina is made according to it. So there are:

- normal
- intermediate and
- low

soda aluminas (Table 2.6-2)
Table 2.6-2
Typical properties of ceramic aluminas

<table>
<thead>
<tr>
<th>Normal Na2O content</th>
<th>Intermediate Na2O content</th>
<th>Low Na2O content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>99.0 - 99.7</td>
<td>99.2 - 99.7</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.25 - 0.55</td>
<td>0.3</td>
</tr>
<tr>
<td>SiO2</td>
<td>0.01 - 0.03</td>
<td>0.025</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.01 - 0.04</td>
<td>0.35</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>0.1 - 0.9</td>
<td>>90</td>
</tr>
</tbody>
</table>

Phase composition (%)					
a-Al2O3	65 - 90	>95	>95	>95	>95
B-Al2O3	detectable	detectable			

| Single crystal size (μm) | | |
| 0.3 - 6 | 3 | 6 (10) | 4 - 5 | 2 - 10 | 2 - 4 |

| Specific surface m²/g | | |
| 6 - 15 | 4 - 7 | 1 | 1 ≤ (0.15) | <1 |

| Average grain size μm | | |
| 30 - 45 | 30 - 45 | + | + | + |

Sinterization properties		
Fired density g/cm³		
>3.6	3.2 - 3.7	≥ 3.7
Firing temperature °C		
>1600		

+ = not characteristic
* = trade marked products of different manufacturers
** = HUNGALU-ALOXID T-1-a-S
*** = HUNGALU-ALOXID G

As shown in Figures 2.6-1 - 2 the total sodium-oxide content has a close connection with the beta-Al2O3 content of the alumina, while the soluble sodium-oxide correlates well with the conductivity of the alumina suspension (Figure 2.6-3). The different types of ceramic aluminas are macroscopically very similar, but the photos made by SEM (scanning electron microscope) show the different morphologies of these aluminas (Figures 2.6-4 - 6). On the SEM photos the well discernible shape and size of the single crystals are besides the sodium oxide content the second very important peculiarities of these aluminas. These and the degree of calcination (characterised by the alpha-Al2O3 content and specific surface) influence the grindability and sinter-activity of alumina which are its very important applicability features from the oxide-ceramic point of view. By grindability we usually mean the grinding time-dependence of one of the granulometric features (specific surface, d₅₀) (Figure 2.6-7). As it is shown in Figure 2.6-8, in addition to the character of material in this question the grinding conditions play an important role, too.
Figure 2.6-1
8-Al₂O₃ phase in ceramic aluminas

Figure 2.6-2
Intensity of 8-Al₂O₃ versus total Na₂O
Figure 2.6-3
Electric conductivity versus Na₂O
Figure 2.6-4
Morphology of the ceramic alumina tested by SEM

Figure 2.6-5
Morphology of the ceramic alumina tested by SEM
Figure 2.6-6
Morphology of the ceramic alumina tested by SEM
Figure 2.6-7
Specific surface versus grinding time

Figure 2.6-8
The d$_{50}$ value versus grinding method
Figure 2.6-9
Ceramic properties vs sintering temperature

Figure 2.6-10
Ceramic properties vs sintering temperature
The theoretical questions of sinter-activity are very complex. Special research groups, institutes deal with the solid state reactions of sinterization. In practice these parameters are determined in a manner, where the alumina powder is pressed into a steel form of a given size, the pressed density is measured (green density, compressed density) then the pressed body is fired (1500-1800 °C) and the change in size due to the firing (shrinkage), together with the density (fired density) and water adsorption are determined (Figures 2.6-9 - 10). As it can be seen from the Table 2.6-2 the specific surface of the aluminas belonging to the above mentioned three categories (well calcined types with ≥95 % of alpha-Al2O3 content) is generally 0.1-5 m²/g, and the diameter of single crystals is 2-10 µm. With these parameters it is impossible to achieve higher fired density than that of 3.7-3.75 g/cm³. However the low soda aluminas have a special subgroup - required by the high-tech manufacturing of technical ceramics - namely the so called sinter-active or thermally activated aluminas. During the above sintering process these aluminas almost achieve the theoretical density of alumina (around 3.9 g/cm³) without any glass forming additive, and even at a 100-200°C lower temperature of, than usual. This special feature of theirs is due to their extra small crystal size (d50 < 1 µm, generally 0.5 µm) and as a consequence that of their relatively high specific surface (5-15 m²/g) in relation to the calcination, enhancing the proceeding of the solid state reaction.

The high purity aluminas have to be mentioned as well. Generally the 99.9 and 99.99 % purity aluminas belong to this group. All of them possess not only high purity, but special fineness (fine disperse systems) and high activity. Owing to the submicron sizes we got over the colloid-chemical features.

2.6.4 Production processes

The decisive part of ceramic aluminas is manufactured by the calcination of normal or specially precipitated hydrates of Bayer technology. In the precipitation of specials by parameters different from the smelter grade precipitation we mean:

- lower aluminate liquor saturation (other concentration, caustic ratio, temperature, seeding rate)
- other precipitation time and
- more intensive washing,

by the condition of calcining of specials we mean

- higher temperature of calcination
- addition of mineralizers
- several steps of calcination.

The calcination can be made in

- conventional rotary kiln
- fluid bed kiln.

A big part of ceramic aluminas gets onto the market after grinding only. The grinding technologies are:

- air jet milling (there is no contamination by the balls)
- ball milling (super grinding)
- vibro milling

Amongst the high purity aluminas the 99.9 % purity can be produced on Bayer-hydrate base, but the 99.99 purity needs a different method, which can be done:

- by solution of aluminium metal in acids, caustics or waterless organic liquids (alkoxid)
- through aluminium salt (chloride, nitride, sulphate)
- with other methods (for example with anodic oxidation of aluminium or plasma technology)

Dealing with the future trends of ceramic technologies as far as manufacturing is concerned we have to mention two things:

- the alumina manufacturers are getting more and more close to the technologies of ceramics so they produce complete press powders mixed with the necessary chemical binding materials, and ready for forming or for other utilization
- the so called sol-gel technologies - as basic technologies of ceramic composite materials - are very promising.
2.7 PRODUCTION OF SPECIAL OXIDE CERAMICS

J. György, M. Dimitrova-Lukács

2.7.1 Special ceramics

Recent progress in the field of ceramics science and technology (discovery of sialons [1] and transformation toughening in ZrO₂-based ceramics [2] in the middle 70's, development of efficient chemistry approaches for production of pure and fine powders, tremendous improvements of shaping and sintering technics) has resulted in developing a new generation ceramics - special ceramics (referred to as advanced, high technology, high performance, fine, engineering, technical ceramics as well).

Special ceramics are inorganic non-metallic materials:

- produced by means of high technologies under well defined and strictly controlled conditions from very pure and fine powders of specified composition and shape;

- with carefully tailored microstructure and excellent mechanical, thermal, chemical or special electrical, magnetical, optical properties ("high performance ceramics": for example zirconia toughened ceramics exhibit extremely high toughness, strength, hardness, wear and corrosion resistance; in case of sialons their high strength, hardness and wear resistance is combined with high thermal stability, oxidation and thermal-shock resistance);

- with a wide range of special applications: artificial bones, cutting tools, parts of ceramic engines, turbine blades, structural parts in devices for emerging technologies etc.;

- very often operated under severe conditions of wear, corrosion, or/and high temperature or/and mechanical stress.

Special ceramics are usually made of common, readily available raw materials using less energy intensive but high knowledge intensive technology processing, so they are high value-added products, therefore very attractive from the economical point of view as well.

Because of their superior properties and growing potential for profitable wide scale-application advanced ceramics have been exciting extremely high interest ("ceramic fever" in Japan) both in scientific and commercial circles, being referred to as
"materials of the future".

With reference to the main chemical component they contain special ceramics can be divided into two main groups:

- **Oxide ceramics**, based on oxides such as Al_2O_3, ZrO_2, MgO, TiO_2. Representative examples are different grades of alumina ceramics, different types of zirconia ceramics. This group includes as well oxide composites as zirconia toughened alumina (ZTA) and chemical compounds between oxides (spinals, granats, titanates, mullite etc).

- **Non-oxide ceramics** based on non-oxides such as Si_3N_4, SiC, AlN, BN, TiN and including carbonitrides ($\text{Si}_3\text{N}_4-\text{SiC}$), oxynitrides such as AlON ($\text{Al}_2\text{O}_3-\text{AlN}$) and different types of SiAlON-s, oxycarbides, oxycarbonitrides and $\text{Si}_3\text{N}_4-\text{ZrO}_2$ and $\text{SiC}-\text{ZrO}_2$ composites, too.

The following topics are dealt with in the present paper:

1 The main results of 20-year-activity of the Special Ceramics (SC) Department in the field of research, development and production of high quality alumina powders and ceramics for different applications.

2 Characteristics of zirconia toughened alumina (ZTA) and some zirconia-based ceramics all developed in the SC Department as research products.

2.7.2 Alumina ceramics

Alumina ceramics are the oldest, best known and widely used technical ceramics. According to their different application fields several grades of alumina ceramics are available. The properties of some of them (our data) are given in Table 2.7-1. The data of the above Table suggests that the properties of alumina ceramics are explicitly determined by Al_2O_3 content and the grain size of the microstructure. This confirms the well known fact that the quality of the starting powder is of great importance in tailoring the requested microstructure and properties of special ceramics. Particular care should therefore be taken in selecting the starting alumina powders.
Table 2.7-2
Chemical and mechanical properties of high-purity alumina ceramics

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>ASTM 603-78</th>
<th>DIAKOR®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ Content</td>
<td>%</td>
<td>99.5</td>
<td>99.97</td>
</tr>
<tr>
<td>SiO₂ + Na₂O + K₂O</td>
<td>g/cm³</td>
<td>3.90</td>
<td>3.96</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Average grain size</td>
<td>µm</td>
<td>2300</td>
<td>2200</td>
</tr>
<tr>
<td>Microhardness</td>
<td>HV</td>
<td>400</td>
<td>420</td>
</tr>
<tr>
<td>Bending strength</td>
<td>MPa</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosion resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Ringer-Solution</td>
<td>mg/m²/day</td>
<td>max. 0.1</td>
<td>0.075</td>
</tr>
<tr>
<td>Wear resistance</td>
<td></td>
<td>max. 0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Diameter tolerance</td>
<td>µm</td>
<td>± 5</td>
<td></td>
</tr>
<tr>
<td>Sphericity tolerance</td>
<td>µm</td>
<td>± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

2.7.2.3 Alumina bioceramics

Biomaterials are structural materials which substitute for some parts of the human body temporarily or finally. There is a steadily growing market of around 15% a year [3] for hip, knee, ankle, shoulder, elbow, wrist and finger replacement joints, a market which by 1996 is estimated to demand 2000000 reconstructive implants [3]. Stainless steel, other metals and their alloys and dense polymers are the materials still commonly used at present but they have two major disadvantages - they wear out and they are only biotolerant but not bioinert (a fibrous capsule around the implant is formed) - which lead to deterioration of their mechanical properties and finally to failure. The solution of both problems has been found in bioceramics - a distinguish group of advanced ceramics with tremendously increased lifetime as implants and hence with growing significance.

In respect to their behaviour in the living organism the bioceramics can be divided into two main types: bioinert- and bioactive ceramics.

Bioinert ceramics are high-purity and high-strength oxide ceramics of which medical grade alumina ceramics play an important role at present. Different types of zirconia-based ceramics and Al₂O₃-ZrO₂ composites represent the next generation bioinert ceramics. All bioinert ceramics are capable of getting included in the bony tissue without any need of conjunctive tissue. Thus the bony tissue forming in the course of healing entirely encloses the ceramic implant providing a strong mechanical link and long lifetime of the implant.

- Bioactive ceramics are compact or porous - usually Ca₃(PO₄)₂ based - structural materials conforming in composition with the mineral composition of the bones and entering into organic bonding with the living bony tissue.
Chemical, microbiological and toxicological investigations have demonstrated that DIAKOR alumina ceramics meet in every respect the requirements specified in the standard ASTM 603-78 (Table 2.7-2). On the basis of the positive results of DIAKOR bioceramics investigation carried out by the authorities the development of implant and prosthesis constructions suitable for clinical testing and use has been started in the SC Department in co-operation with several groups of physicians. Since 1987 the SC Department has been continuously producing a wide range of bioceramic implants and prosthesis such as: various ceramic roots for teeth implants and jawbone elements for use in dental surgery; auditory and larynx elements, hip-joint balls (Figure 2.7-4). In the course of the 7 years of clinical application of the DIAKOR bioceramics perfect biocompatibility of the material has been proved.

Figure 2.7-4

DIAKOR bioceramics
a.) teeth roots, b.) jaw-bones, c.) auditory and larynx elements, d.) hip-joint balls
2.7.3 Outlook for development of alumina ceramics

Griffits equation:

\[S = \frac{YK_{IC}}{\sqrt{a}} \] \tag{4}

(where \(Y \) is a geometrical factor) suggests that there are two fundamentally different approaches to increase the strength \(S \) and hence the reliability of given material [4, 5]:

- accepting brittleness, strict microstructural flow size \(a \) control through better preparation first of all using high purity, monodisperse powders, colloidal processing, clean room fabrication, high tech. shaping and sintering technics
- toughening - reducing the brittleness resp. increasing the toughness of the material characterized by its critical stress intensity factor \(K_{IC} \).

In our department activity for development of alumina ceramics is in progress in both mentioned directions:
- on the one hand, for producing new aluminium oxide powders finer than any available so far by means of special sol-gel and plasma-technologies resulting in ceramics of fine grained crystalline structure with uniform grain size distribution which accounts for their enhanced mechanical properties
- on the other hand, for developing toughened Al\(_2\)O\(_3\)-based composites.

2.7.4 Zirconia toughened alumina ceramics (ZTA)

Different toughening mechanisms have been reported [4] for toughened Al\(_2\)O\(_3\) based composites: whiskers, fibres or platelets reinforcement in the case of Al\(_2\)O\(_3\)-SiC system, ductile reinforcement (metal particles' dispersion) in the case of Al\(_2\)O\(_3\)-Al and Al\(_2\)O\(_3\)-Ni systems and transformation toughening in the case of Al\(_2\)O\(_3\)-ZrO\(_2\) composites - the system being one of the subjects of our latest R and D activity.

2.7.4.1 Transformation toughening mechanisms

Due to the tetragonal to monoclinic (t \(\rightarrow \) m) transformation of metastable tetragonal ZrO\(_2\) particles (t-ZrO\(_2\)) zirconia alloying is very efficient tool for increasing both the strength and the toughness of many ceramics (Al\(_2\)O\(_3\), Si\(_3\)N\(_4\), SiC [5, 6] via two different mechanisms:

- Stress induced transformation toughening: under operating conditions applied stresses generated around the crack cause the metastable t - ZrO\(_2\) particles of sufficient size to undergo t \(\rightarrow \) m transformation resulting in absorption of the crack energy which accounts for the increase in material's resistance to the crack propagation and resp. results in toughening.
Microcracking: - taking place in a ceramic matrix which incorporates monoclinic ZrO₂ particles (m - ZrO₂) of sufficient size and caused by the volume expansion (3 - 5 %) of the ZrO₂ particles occurring during their t --> m transformation upon cooling from sintering temperature. Microcracks absorb or dissipate the energy of the crack thereby increasing the toughness of the ceramics.

2.7.4.2 Properties of our ZTA ceramics

In the case of ZTA ceramics microcracking is considered governing their toughness. Some literature data [7] and our own experience however suggest that for achieving maximum toughness and strength in ZTA ceramics both toughening mechanisms should be put in operation. From a technological point of view this means that the initial composition and all the stages of the processing should be properly selected and strictly controlled to assure the presence of both m - ZrO₂ and t - ZrO₂ particles of sufficient size and quality in the Al₂O₃ matrix. This way efficient technology has been developed in the SC Department for pilot scale production of high quality ZTA ceramics with the following main properties:

- bulk density 4.9 g/cm³
- average grain size: 1 - 1.5 µm
- bending strength: 600 - 800 MPa
- fracture toughness: 8.5 MPa m⁻¹/²

These ceramics exhibit two-fold increase of fracture toughness and strength with reference to alumina ceramics. Our results are consistent even with those reported for HIP-ed ZTA ceramics [7, 8, 9].

2.7.5 Transformation toughened zirconia ceramics

Extensive research exploring the concept of stress induced transformation toughening in zirconia has resulted in developing a new class ZrO₂-based ceramics with superior mechanical properties, namely:

- partially stabilized zirconias (PSZ: Mg-PSZ, Y-PSZ, Ca-PSZ) in which fine t - ZrO₂ particles are precipitated in the cubic ZrO₂ matrix and

- tetragonal zirconia polycrystals (TZP: Y-TZP, Ce-TZP) consisting of nearly 100 % fine grained tetragonal phase.

According to a vast number of publications the stress induced transformation toughening is considered to be the dominating toughening mechanism in both PSZ and TZP ceramics.
time with high strength (Table 2.7-3). So they can compete with 3Y2O3-TZP sintered ceramics (TOSOH powder source), with the commercial Ce-TZP ceramics and even with some HIP-ed and much more expensive Y-TZP ceramics. In addition Ce-TZP do not show degradation of their mechanical properties at low (200 – 300 °C) temperatures well documented for many Y-TZP ceramics. Sintered Ce-TZP and Ce-TZP-Al2O3 ceramics parts of different shape and size produced by means of cold isostatic pressing and injection moulding technics are shown in Figure 2.7-7. Ceramics of this quality can be successfully used as reconstructive implants, blades for knifes and scissors bearing parts, grinding media, golf club faces etc.

Table 2.7-3
Main properties of our sintered TSP ceramics

<table>
<thead>
<tr>
<th>Type of ceramics (Powder source producer)</th>
<th>Bulk density g·cm⁻³</th>
<th>Average grain size μm</th>
<th>Bending strength MPa</th>
<th>Fracture toughness MPa·m⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce-TZP</td>
<td>6.1-6.2</td>
<td>0.5-1.5</td>
<td>500-1000</td>
<td>12-17</td>
</tr>
<tr>
<td>Ce-TZP (TOSOH production)</td>
<td>6.2</td>
<td>-</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>3Y2O3-TZP (TOSOH powder)</td>
<td>5.5</td>
<td>0.3-0.5</td>
<td>1000-1150</td>
<td>9-10</td>
</tr>
<tr>
<td>Ce-TZP-Al2O3 (composites)</td>
<td>6.0</td>
<td>0.3-0.5</td>
<td>600-800</td>
<td>8-13</td>
</tr>
</tbody>
</table>

References

2.9 VANADIUM PENTOXIDE PRODUCTION

T. Szalai

The production technologies for vanadium pentoxide particularly concerning the possibilities of recovery of vanadium from bauxite, is the most important indigenous source of vanadium. Vanadium does not occur in elementary state in nature. However, it represents one of the most current elements. Vanadium constitutes 0.015-0.016% of the earth's crust indicating that it exceeds the amount of e.g. copper, nickel, zinc, lead or tin.

Despite its wide-spread occurrence, few areas comprise real vanadium ores only. Characteristically vanadium ore deposits are not widely scattered, however, they can be found in great quantities in some places. Apart from vanadium ores, the metal occurs also in other ores e.g. iron ores, uranium ore, chromium ore, lead ore and it can be recovered as by-product when processing it. The bulk of world vanadium production is linked up with the production of uranium and iron. In the United States of America vanadium figures as the by-product of the uranium industry. In the Soviet Union an iron ore comprising 0.1% of vanadium represents the source of vanadium production enabling the formation of slag with 10-12% of V_2O_5. In addition to the foregoing vanadium may also be found in certain sorts of carbon and crude oil. Their combustion residues may thus represent a potential source of vanadium. Though bauxite possesses less importance as a source of vanadium, however, it represents the sole notable vanadium carrier in Hungary.

2.9.1 Bauxite as the source of vanadium
UNIDO/ALUTERV-P'kI Ltd. - 155 -

quality, by the temperature and pressure of digestion, the concentration and impurity of digestion liquor, the charging of various additives during digestion and the treatment of bauxite prior to digestion, too. Publications dealing with the solubility of vanadium content of bauxites in caustic liquors agree all, that only a part - about 30 - 40 % - of the vanadium content of bauxites dissolves in the digestion liquor [1].

In the course of digestion of bauxite vanadium gets dissolved and is present in the digestion liquor in the form of sodium orthovanadate (Na$_3$VO$_4$) and gets enriched corresponding to its equilibrium solubility [2, 3].

Further 60 - 70 % of V$_2$O$_5$-content of bauxites is disposed off along with red mud to the red mud storage area. Owing to lack of economic recovery method this amount of vanadium content cannot be made use of.

Caustic soluble accompanying elements e.g. phosphorus, fluorine, arsenic also dissolve during digestion and get enriched in the process liquor circuit.

2.9.2 Recovery of vanadium from bauxites

Using Bayer-type alumina process technology about 60 - 70 % of vanadium content dissolved from bauxite can be recovered in the form of vanadium crystals or vanadium salt.

Necessity of vanadium separation is motivated partly by the demand for the recovery of a vanadium bearing basic material, partly by the condition that vanadium and the above impurities get enriched in alumina causing deterioration of quality. Moreover, their spontaneous precipitation from the process liquor circuit could result in operating troubles.

There are various methods for the recovery of vanadium crystals
References

2.8 PLASMA MATERIALS FOR CERAMICS

P. Lukács, E. Juhász

2.8.1 Plasma state and types of plasmas

The investigation of plasma state has continued to attract the interest of ever increasing numbers of scientists and technologists and solid evidence of commercial application for chemical and metallurgical processes is now available. Interest in plasma technologies has grown immensely during the last two decades. This is mainly due to their wide application in the production of ultrafine high hardness and high-melting temperature carbide, nitride and oxide powders that are synthesized in thermal plasma reactions.

Plasma processing makes use of the plasma state, which is frequently referred to as fourth material state, because more than 99% of the universe inside of human conception is in the plasma state.

2.8.1.1 Some behaviours of the plasma state

Plasma can be characterized like a diamagnetic material. The most important behaviour of the plasma, making the big difference to the usual gas state, is the influence of the outside electric and magnetic fields on the elastic plasma medium.

From the point of view magnetical hydrodynamics plasma is a compact medium, in which there is a possibility for formation of current flow. The interaction of these current and the magnetic field give that electrodynamic power, which equibalance the gas dynamics pressure.

Figure 2.8-1 shows the influence of an outside magnetic field on the plasma torch.

The plasma shows a quasi-neutrality outside, whenever there are free electric charges in the plasma: negative and positive charges compensate each other.

In case of a dense medium it is very important that the linear size of field should be much bigger, than the Debye radius of the screening (see Figure 2.8-2.)
Figure 2.8-1
The behaviour of the plasma torch

Figure 2.8-2
Debye radius of screening
The above characteristics of a plasma could be used successfully for technological cases.

To generate a plasma state one can use the thermal heating. No solids or liquids exist above 5000°K (at 1 atm pressure) and above 10000°K no molecules and very few atoms exist, since they become ionized at these temperatures. (Figure 2.8-3).

![Figure 2.8-3](View of the behaviour of ions of matter at high temperatures [1])

In general, a plasma consists of a mixture of electrons, ions and neutral species.

Plasma chemistry utilizes the high temperature and high energies produced in plasmas. The heat content of monoatomic and diatomic gases as a function of temperature at 1 atm can be seen Figure 2.8-4 [1].

Although there are free electric charges in a plasma, negative and positive charges compensate each other, i.e. the overall a plasma is electrically neutral.

Plasmas may be generated by passing an electric current through a gas. The passage of an electrical current through the electrode gap leads to an array of phenomena known as gaseous discharges. Such gaseous discharges are the most common, but not the only means for producing plasmas. For certain applications plasmas are produced by electrodless high frequency or capacity discharges. Finally, plasmas may also be produced by heating gases (vapours)
in a high temperature furnace.

2.8.1.2 Types of plasmas produced by electrical discharges

Plasmas produced by electrical discharges could be divided into two types:

- "Hot equilibrium thermal plasmas", which are characterized by an approximate equality between heavy particle and electron temperature. The thermodynamic state of the plasmas approaches equilibrium or, more precisely, local thermodynamic equilibrium (LTE). LTE comprises not only kinetic equilibrium ($T_e = T_h$; T_e = electron, T_h = heavy particle temperature) but also chemical equilibrium, i.e., particle concentrations in a LTE plasma are only a function of the temperature. Typical examples of thermal plasmas are those produced in high intensity arc and plasma torches.

- "Non-equilibrium cold plasmas". In contrast to the thermal plasmas coldness are characterized by high discharge temperatures and rather low temperature of the heavy particles. ($T_e \gg T_h$). Plasmas, produced in various types of glow discharges and in corona discharges are typical examples of such non-equilibrium plasmas.
Thermal as well as non-equilibrium plasmas cover a wide range of temperatures and electron densities.

For practical uses there are two other important features of plasmas.

- thermodynamically

\[\Delta G = \Delta H - T \Delta S = -RT \ln(K_p) \text{ and } \ln(K_p) = f(1/T) \]

\{1\}

In this case \(\Delta H = f(T) \) and \(\Delta S = f(T) \).

All these mean that at high temperatures and \(p = \text{constant} \) pressures the dissociation and decomposition predetermine the chemical reactions.

- kinetically the reaction velocity constant

\[K_j = K_o \exp \left(-\frac{E}{kT} \right) \]

\{2\}

because of the fact \(E_{\text{act}} \ll kT \) can be expressed for a gas phase reaction

\[A_i + B_j \longrightarrow C_k + D_l \]

\{3\}

like

\[K_j = \int_0^\infty \int_0^\infty \sigma_{ij} \cdot f(v_{AB}) \cdot f_{A_i}(v_{A_i}) \cdot f_{B_j}(v_{B_j}) \cdot dv_{A_i} \cdot dv_{B_j} \]

\{4\}

where \(\sigma_{ij} \cdot v_{AB} \) = the efficient reaction cross section

\[v = \text{velocity of the reactive particles} \]

\[f(v) = \text{particle distribution as a function of velocity} \]

Finally

\[K \leftrightarrow f(T) \]

\{5\}

All these mean, that we can use the high temperature rate of the plasma as well, as the efficiency of the plasma state separately the temperature.

2.8.2 Apparatus

ALUTERV-FKI Ltd. has got a laboratory for complex plasma technologies, in which there are DC, RF, microwave, capacity plasma equipments.

Both direct current (DC) and radio frequency (RF) plasmas are commonly used for material synthesis.

Although the DC torch has been used successfully for many
applications in plasma synthesis, the problem of material contamination by the electrodes has limited the use of such systems for synthesis of ultrapure materials. The conversion efficiency is low as a consequence of high velocities and short residence times characteristic of the DC plasma.

These problems have led to the development of the inductively coupled RF plasma. Radio-frequency plasmas have a number of important applications including deposition of ceramics, synthesis of high purity and fine ceramic powders.

Capacity plasma has the same advantages, as non-equilibrium plasma.

2.8.3 Non metallurgical, special aluminas

According to the forecast the consumption of the special aluminas is expected to increase during the next years. Market trends for non-metallurgical aluminas in the period 1988-2000 show, that ceramic materials ranked fifth place. It means, that advanced ceramics are already a major market for the high-purity, fine grade alumina.

World market price of special aluminas exceeds that of metallurgical alumina, in some cases it is two times higher.

2.8.3.1 Production of non-metallurgical alumina

Various processes have been proposed for the production of high purity alumina. A lot of them manufactures aluminas by the after treatment of raw materials produced by the Bayer process. Aluminas prepared by the Bayer-process all contain alkali ions, which can not easily be removed to concentration, which would not affect the quality of sintered alumina products.

For the production of good quality ceramics high purity, ultrafine, granulated, α-alumina is needed with determined grain size.

Since traditional manufacturing processes can hardly keep pace with the rapidly increasing qualitative requirements, an intensive research and development work is in progress to satisfy them.

2.8.3.2 Production of non-metallurgical alumina by plasma technique.

For the preparation of ceramic materials such as alumina, plasma technique represents a very important field. Alumina based ceramic powders have already been successfully synthesized in thermal plasma reactors.
Different types of plasma equipment were developed and technologies for the production of alumina were evaluated in the Plasma Laboratory of ALUTERV-FKI Ltd. as well.

One of the new methods could be the production of special alumina by thermal oxidation of anhydrous aluminium chloride in plasma.

The basic reaction of the process is:

\[2\text{AlCl}_3 + 1.5 \text{O}_2 = \text{Al}_2\text{O}_3 + 3\text{Cl}_2 \] \[\text{(6)} \]

The main process steps of the thermal oxidation in plasma equipment are:

1. Continuous feeding of aluminium chloride
2. Oxidising decomposition of the aluminium chloride
3. Cooling of the alumina containing gas and separation of the product from the exhaust gas.

Tests were carried out in a DC plasma and in a RF plasma equipment as well.

1. Sketch drawing of the DC plasma equipment and the attached reactor is given in Figure 2.8-5. In this case aluminium chloride were introduced in vapour state at 350 °C into the reactor. Direct current plasma was generated in the presence of tungsten cathode and copper anode. The plasma forming gas was the air.

![Sketch drawing of the DC plasma equipment and the attached reactor](Figure 2.8-5)
The operational parameters and the feature of alumina synthesized in DC plasma are given in Table 2.8-1.

Table 2.8-1
The operational parameters and the feature of alumina synthesized in DC plasma

<table>
<thead>
<tr>
<th>Nominal power</th>
<th>20 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc current</td>
<td>100 A</td>
</tr>
<tr>
<td>Arc voltage</td>
<td>135 V</td>
</tr>
<tr>
<td>Plasma power</td>
<td>13.5 kW</td>
</tr>
<tr>
<td>Plasma forming gas</td>
<td>5.5 Nm³/h air</td>
</tr>
<tr>
<td>Specific surface area</td>
<td>10.9 m²/g</td>
</tr>
<tr>
<td>Phase analysis</td>
<td></td>
</tr>
<tr>
<td>teta- Al₂O₃</td>
<td>90 %</td>
</tr>
<tr>
<td>α- Al₂O₃</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Tests were carried out in RF-plasma equipment as well. The flowsheet of this process is given in Figure 2.8-6. A quartz tube of 100 mm inner diameter was used as reaction chamber. The reaction zone was developed by the use of RF induction plasma (Figure 2.8-7). Aluminium chloride of homogenous, narrow grain size distribution was introduced in solid state with air stream into the reaction area. The place of material feeding, the amount of plasma forming gas and the plasma power were changed during the process.

![Figure 2.8-6](image-url)

Flowsheet of RF-plasma equipment
Exhaust gas mixture comprising the fine product was conducted through a cooling/quenching unit to a bag filter.

Figure 2.8-7
The reaction zone of RF induction plasma

Operational parameters of the technology and the features of alumina products are given in Table 2.8-2.

<table>
<thead>
<tr>
<th>Operational parameters and the feature of the alumina produced in RF plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal power</td>
</tr>
<tr>
<td>Plasma power</td>
</tr>
<tr>
<td>Plasma forming gas</td>
</tr>
<tr>
<td>Carrier gas</td>
</tr>
<tr>
<td>Carrier gas</td>
</tr>
<tr>
<td>Specific surface area</td>
</tr>
<tr>
<td>Phase analysis</td>
</tr>
<tr>
<td>delta-teta - Al$_2$O$_3$</td>
</tr>
<tr>
<td>alpha - Al$_2$O$_3$</td>
</tr>
</tbody>
</table>

SEM images of Al$_2$O$_3$ powder are given in Figures 2.8-8 and 2.8-9.
Figure 2.8-8
SEM images of Al$_2$O$_3$ powder

Figure 2.8-9
SEM images of Al$_2$O$_3$ powder
recovered thereof. Alumina hydrate wash waters enriched to the extent of 1-2 gpl of V₂O₅ are used to wash the evaporators. During washing procedure the solution concentrates for caustic soda, moreover sodium fluoride deposits from the last stages of the evaporator bodies get also dissolved. The latter highly reduces the solubility of vanadium. On cooling wash water to 40 °C crystals comprising more than 10 % of vanadium content precipitate and can be separated by means of a filter or a centrifuge [6].

Technologies in practice in indigenous alumina plants for the separation of vanadium salt set out from spent liquor or strong liquor. Common basic principle lies in cooling liquors and separating crystals after adequate retention time. The difference may be particular plant conditions, cooling methods determined by the equipment available and the use of separating machines [7].

2.9.3 Processing of vanadium salt

From among vanadium raw materials Hungary possesses the vanadium salt raw material separated from the aluminate liquor of the alumina production only. Processes treating vanadium sludges and salts from an alumina plant may be fairly diverse depending on the composition of starting raw material, the purification procedures of the vanadate solutions and the quality stipulations imposed upon the final product.

Generally, the majority of processes producing vanadium pentoxide is characterised by the following particular operational stages:

- beneficiation
- dissolution of crystals
- purification of vanadate solution
- separation of vanadium
- producing vanadium final product.

2.9.4 Beneficiation

Beneficiation is required when vanadium pentoxide content of vanadium salt separated from aluminate liquor of the alumina production is as low as 1 - 5 %. In this case the sludge is treated with sufficient amount of hot water to dissolve its vanadium content. Insoluble fraction is removed by filtration. Alkaline filtrate is cooled allowing crystallization of a vanadium salt more riche in vanadium. Vanadium content of salt compounds obtained by the methods adopted for the separation of vanadium salt in our alumina plants comes to 8 - 18 % thus no particular beneficiation is required.
2.9.5 Dissolution of crystals

All the constituents comprised in vanadium salt are present in the form of sodium salt. On dissolving with water the solution exhibits strong alkaline reaction.

Beside sodium vanadate (Na₂VO₄) as main component,

- sodium phosphate (Na₃PO₄),
- sodium arsenate (Na₃AsO₄),
- sodium fluoride (NaF),
- sodium carbonate (Na₂CO₃),
- and sodium aluminate (NaAlO₂)

may be found in the aqueous solution of the vanadium salt. Beside monomeric molecules there are also polymeric molecules as a function of the pH-value in the aqueous solution of vanadates.

2.9.6 Purification of vanadate solutions

From the point of view of quality of vanadium compounds produced as final product the degree of purity of sodium vanadate solutions is of decisive importance. Removal of impurities (phosphorus, arsenic, fluorine, aluminium) present in vanadium salt represents the most important phase of production. Several processes have been developed and patent specifications elaborated for the production of vanadium compounds from vanadium salt which mainly differed from each other by the method of achieving proper quality of the final product only. Consequently, the vanadium producing processes and technologies proceeding from vanadium salt as the basic material can be grouped as follows:

2.9.6.1 Processes based on the removal of impurities

Further possible subdivision is:

Technologies adopting crystallization
Methods based on fixing impurities

Removal of impurities by crystallization

According to the patent specification of E. Bogárdi et al. [8], after the dissolution of vanadium salt with hot water the phenolphthalein alkalinity of solution is reduced by 10-40 % (pH value reduces by a few decimals only), then the solution is cooled to 20 °C to precipitate large amounts of crystals. The mass virtually lacks of sodium fluorovanadate. Resulting crystals represent a mixture of sodium fluorophosphate and sodium fluoroarsenate. In this way one can get rid of the bulk of phosphorus, fluorine and arsenic content of the sodium vanadate solution. About 80-85 % of phosphorus content and about
90–95% of arsenic content of liquor can be crystallized by this method.

According to a patent specification of Montecatini [9], partial removal of impurities from sodium vanadate solution can be achieved when the alkaline solution obtained by dissolving vanadium salt with hot water is treated with sulphuric acid to set the pH-value to a slightly alkaline range. On cooling this slightly alkaline solution considerable portion of the phosphorus content separates in the form of sodium hydrogen phosphate, large part of the arsenic content in the form of sodium hydrogen arsenate and the fluorine content in the form of cryolite having been combined with aluminium present in the liquor. From vanadate solution partially purified vanadium may be obtained either in the form of ammonium metavanadate or get precipitated in the form of vanadic acid by further acidifying the solution with sulphuric acid.

Methods based on fixing impurities

These methods are characteristic of the condition that the impurities present in sodium vanadate solution are generally removed as calcium salts in the form of their insoluble compounds. According to an Italian process, aqueous solution of vanadium salt is treated with lime milk. Essence of the process lies in the condition that one part of vanadium salt is dissolved in two and a half part of water and 3.5 moles of calcium hydroxide is added for every mole of P₂O₅-content in excess of the amount of lime milk necessary for the causticization of sodium carbonate content of the vanadium crystals. The lime milk suspension is heated up and gets filtered. The precipitate comprises the impurities while the filtrate is cooled causing sodium orthovanadate to crystallize. In the course of further processing vanadium pentoxid is formed. The advantage of the process is, that after crystallization the final liquor can be returned to the process liquor circuit of the alumina production owing to its purity and comparatively high caustic soda concentration while the lime precipitate comprising mainly dicalcium phosphate may be utilized as fertilizer component. However, there is a disadvantage, too since beside calcium phosphate hard to dissolve calcium vanadate also forms causing certain losses as to the efficiency of vanadium recovery. In a process vanadium losses can be reduced by acidifying the highly alkaline solution obtained by dissolving vanadium salt with water. Then the solution is treated with calcium oxide at room temperature in order to prevent the formation of calcium vanadate.

There is a process according to which the precipitation of phosphorus with calcium hydroxide takes place under pressure in the digester. In this procedure the formation of calcium phosphate increases upon the increase of pressure while the formation of calcium vanadate decreases. Apart from lime milk and burnt lime, calcium sulphate represents one of the best known and
current auxiliary material adopted for fixing impurities of the sodium vanadate solution [10].

In order to purify sodium vanadate solution e.g. fine-grained compact alabaster gypsum is added. On heating up the solution phosphorus precipitates in the form of calcium phosphate and can easily be filtered. The ground compact alabaster gypsum has been later on substituted by the precipitated gypsum obtained as by-product of tri-sodium phosphate production, however, other sorts of waste gypsum may also be used for dephosphorization.

2.9.6.2 Processes based on fixing vanadium

Within the framework of processes based upon fixing vanadium, two groups can be distinguished:

- calciferous processes
- processes adopting ammonium salts

Calciferous processes

To the alkaline solution obtained after the dissolution of vanadium salt with hot water burnt lime or lime milk is added fairly in excess. Lime precipitate obtained comprises insoluble calcium salts of impurities and vanadium in the form of calcium vanadate. The filtrate can be returned to the process liquor circuit of the alumina production due to its Na₂O-content. The calciferous or calcium vanadate bearing precipitate is decomposed by sulphuric acid in the course of which major part of vanadium dissolves, together with a part of the impurities, too. It is a disadvantage of the process that the final product is contaminated and the value of percentual recovery for V₂O₅ is low.

Processes adopting ammonium salts

Root of these processes is that in the sodium vanadate solutions obtained by leaching the vanadium salt, exhibiting a V₂O₅ to P₂O₅ ratio or roughly 1 : 1, vanadium is fixed with ammonium salt /mostly NH₄Cl, (NH₄)₂SO₄, NH₄NO₃/, namely by the use of multiple quantity of that of the stoichiometric required to bind vanadium. In this way ammonium metavanadate is produced and after its calcination high purity V₂O₅ is obtained [11].

2.9.6.3 Processes adopting ion exchange

Recovery of vanadium content of the vanadium salt by ion exchange can be performed by two methods:

- by means of liquid ion exchange media in so-called extraction processes
- by means of ion exchange synthetic resins.
Processes adopting liquid ion exchangers

The extracting agents of both liquid anion exchange and liquid cation exchange are adopted by the processes performed by the help of the liquid-liquid extraction. The liquid cation exchanges are alkyl-phosphoric acid derivatives (e.g. diethyl-hexyl-phosphoric acid), however, the anion exchanges are various primary, secondary and tertiary amines. Recovery of vanadium by extraction can take place as follows: according to the following, the amine present in an inert organic solvent (petrol, Diesel fuel, kerosene) is mixed up with the vanadium bearing aqueous solution. Vanadium passes into the organic phase which is then separated from the aqueous part. After the reextraction with ammonium and ammonium salt, respectively, of the organic phase ammonium metavanadate is produced [12, 13].

Processes adopting ion exchange synthetic resins

Owing to various kinds of vanadium compounds present in the aqueous solution, similarly with extraction, both anion and cation exchanges can be used for the process of vanadium separation adopting ion exchange synthetic resins. Owing to special operating conditions and the use of expensive reagent plant-scale, processing of vanadium crystals could not be realised [14].

2.9.6.4 Electrochemical processes for the recovery of V$_2$O$_5$

Recovery of vanadium by electrolytic way means that the aqueous solution of the vanadium salt is electrolysed by the use of movable mercury cathode and caustic insoluble anode (e.g. iron, carbon, nickel). The terminal voltage comes to 6-8 V, current density of the anode 4-5 A/dm2 and temperature of the electrolyte 70-80 °C.

In the course of electrolysis, 5-valent vanadium present in the alkaline vanadate solution reduces to 4-valent tetravanadate and precipitates as an alkaline electrolyte insoluble compound due to the impact of reducing hydrogen depositing with high overvoltage on the mercury cathode reducing hydrogen depositing with high overvoltage on the mercury cathode.

2.9.7 Short review of the technology for V$_2$O$_5$-production in Magyaróvár (MOTIM)

From the primary vanadium carriers Hungary possesses only bauxite ore which can be regarded as a raw material suitable for plant-scale production of vanadium salt.

In the course of digestion with caustic soda under pressure according to the Bayer-type alumina production technology, apart
from alumina representing the bulk of bauxite, trace elements (vanadium, phosphorus, fluorine, arsenic, etc) also dissolve to form vanadium compounds.

Methods for processing vanadium salt have been outlined with special regard to the technology established in Mosonmagyaróvár in 1951 for the production of laminar vanadium pentoxide and which has been operating ever since.

For the production of vanadium pentoxide vanadium salt is received from the alumina plants (Ajka and Mosonmagyaróvár). Average composition of vanadium salt separated in indigenous alumina plants operating according to the Bayer-technology is given in Table 2.9-1.

<table>
<thead>
<tr>
<th>Table 2.9-1. Composition of vanadium salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive moisture</td>
</tr>
<tr>
<td>V₂O₅</td>
</tr>
<tr>
<td>P₂O₅</td>
</tr>
<tr>
<td>As</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Al₂O₃ total</td>
</tr>
<tr>
<td>Na₂O caust</td>
</tr>
<tr>
<td>Na₂O total</td>
</tr>
</tbody>
</table>

Vanadium salt which is fairly water soluble is dissolved in a vanadium bearing solution obtained in the course of recrystallization of phosphorus-fluorine-arsenic compound crystals. Alkalinity of the solution is slightly weakened by the use of concentrated sulphuric acid. The solution treated with sulphuric acid is cooled in order to remove P-, F- and As-content. The crystalline mass separating on cooling comprises about 90-95 % of P- and As-content of the original solution and about 55-65 % of the fluorine content in the form of sodium fluoroarsenate and sodium fluoro-phosphate. In addition to the impurities, the PFAs-crystal comprises also 1.5 - 3.5 % of V₂O₅.

For the separation of salt and vanadate solution an uniplanar vibration sieve is used. Prior to the separation of vanadium the prepurified vanadate solution should entirely be purified from the impurities. The P- and F-content of sodium vanadate solution is precipitated by adding further amounts of sulphuric acid and calcium salt. Separation of precipitated impurities and the liquid phase is done by means of frame filter presses.

Sulphuric acid and ammonium salt is added to the pure sodium vanadate solution. As a result polyvanadate of the formula of \(\text{R}_{1.2,3/6} \text{V}_{6}\text{O}_{18}\) precipitates wherein R cation may be sodium, hydrogen or ammonium. Dewatering and transferring into laminated structure, of polyvanadate precipitated from the sodium vanadate solution takes place in oil-fired furnaces at temperatures of 600-700 °C. The chemical characteristics of the product are summarized in the Table 2.9-2.
Table 2.9-2
Trade quality of the laminar vanadium pentoxide

<table>
<thead>
<tr>
<th>Content in %</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₂O₅</td>
<td>min.</td>
<td>98.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>SiO₂</td>
<td>max.</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>0.03</td>
<td>0.30</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>max.</td>
<td>0.30</td>
<td>0.05</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>max.</td>
<td>2.00</td>
<td>4.00</td>
</tr>
<tr>
<td>As</td>
<td>max.</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

References

2.10 GALLIUM RECOVERY FROM BAYER CYCLE

I. Somogyi, K. Fodor, M. Földvári, I. Somosi, J. Vitéz

2.10.1 General review of gallium

Gallium as the heavier atom weight homologous of aluminium was predicted by the Russian chemist Mendeleev on the bases of his periodic system in 1895. It was named eca-aluminium.

This homologous of aluminium, gallium was discovered by Lecoq de Boisbaudran in 1875 and he produced it shortly and named it gallium after the ancient Latin name of France (Gallia).

Gallium can be found in the third group of Mendeleev periodic system between aluminium and indium. Gallium is a silver-white metal, its melting point is 29.78 °C and boiling point is 2403 °C. The melted gallium density is 6.095 (at 29.8 °C), the solid gallium density is 5.904 g/cm³ (at 29.6 °C), so its volume increases during freezing. It has a rhombohedral crystal form. The chemical properties of gallium are similar to aluminium, nevertheless the two metals show some substantial differences. One of the best solvent of gallium is the aqua regia. In solutions of alkalis the gallium dissolves with the evolution of hydrogen forming alkali-gallates. The reaction rate of gallium with acids and alkalis decreases considerably if the purity of the metal exceeds 99.999 %.

In nature no individual mineral with gallium as a major constituent is known, however it is a fairly widely distributed metal. The average gallium content of the earth crust is 15 g/t. Germanit as mineral with the richest gallium content can be found in South-West Africa. Germanit contains 5 to 9 % germanium and 0.5 to 2.0 % gallium. Gallium can be found in all of the aluminium minerals so bauxite has 25-50 g/t gallium-content, too.

Gallium forms alloy with the most of metals between its melting point and 600 °C and these alloys differ strongly from the basic metals in properties even if their gallium content is low.

Nowadays the developed industry especially the semi-conductor industry cannot stand without gallium and its cor...

2.10.2 Development of gallium production

Since individual gallium mineral is not available, such technological cycles can be used for the production of gallium where it is gradually enriching in the raw material. For instance
the circulating aluminate liquor of alumina industry. The gallium content of bauxite dissolves during digestion of Bayer cycle and it achieves an equilibrium concentration in sodium aluminate solution depending on the technological parameters.

Recovery of gallium from aluminate liquor was realised the first time by the French Pechiney Company the was done and a block of gallium was shown at EXPO in 1937 [1].

Important progress began in the industrial production of gallium in 1956 when P. de la Breteque published his research results. In accordance to the process he developed can be obtained from aluminate liquor by electrolysis with mercury cathode [2].

In Hungary the HUNGALU ENGINEERING AND DEVELOPMENT CENTRE and the Chemical University of Veszprém were first engaged in industrial production of gallium. Using the process of HUNGALU ENGINEERING AND DEVELOPMENT CENTRE the gallium can be obtained from Bayer liquor, choosing the current density of the cathode and the temperature of the electrolyte to deposit as much metal sodium as 0.4 times amount of gallium so that there is a really amalgam cathode during the electrolysis. Decomposing the amalgam with water the gallium deposited by electrolysis forms sodium gallate solution and the metal gallium can be obtained on the solid cathode [3].

The process of the Chemical University of Veszprém is based upon a cell equipped with rotating iron cathode disks which are coated with amalgam. So the efficiency of a given cell is substantially increased and the amount of mercury and the basic area are reduced simultaneously. It has been found the gallium can not be deposited by electrolysis only also by reduction of the sodium amalgam, too [4].

Lately researches arrive to recover gallium from Bayer liquor by non-mercury cathode for environmental considerations and to protect health all over the world. Two main trends can be mentioned:

the cementation by aluminium and the extraction from alkaline solution. In alkaline agent gallium forms complexes with β-diketone type compounds (for example acetyl-acetone and its substituted by-products) which are brought to organic solvent phase (for example : iso-butanol or its homologouses). Characteristic of this process is that the formation of the complex and the extraction are carried out at the same time so that the watered solution of alkali is treated with the mixture of the complex forming material and the solvent [6].

2.10.3 Process technologies

In the Alumina Plant of Ajka Aluminimindustrial Co. Ltd. the
technologies of amalgam cathode and cementation by aluminium are used on the bases of Bayer cycle. In both technologies raw material and its preparation are the same with differences in the method and the equipments only.

2.10.3.1 The aluminate liquor as basic material

To determinate the capacity of a gallium plant situated next to a certain alumina plant it is necessary to know the quantity of obtainable gallium.

It is known that 60 to 70 % of the gallium content of the bauxite dissolves during digestion and it concentrates in aluminate liquor. In literature there were no data referring to the equilibrium gallium concentration of forming-system in a given alumina plant. So no estimation as to the quantity of obtainable gallium was available.

According to our tests the equilibrium gallium concentration of precipitated aluminate liquor can be described by the following exponential function [7]:

\[\text{Ga}_q = \lim_{n \to \infty} a \cdot \frac{q}{1 - q} \quad \{1\} \]

where

- \(n \): number of digestions cycles,
- \(a \): Ga mg/dm³ dissolving during a digestion cycle recalculated to the \(\text{Na}_2\text{O} \) concentration of precipitation,
- \(q \): the rate of gallium concentration in aluminate liquor after and before precipitation.

It can be stated that the function is true for all of Bayer type alumina production using a given technology. Changing a step of technology the equilibrium concentration of gallium in aluminate liquor is raising by 10 to 20 %.

Having known the equilibrium concentration of gallium and the data of gallium balance in cycle we can calculate the amount of obtainable gallium.

The calculated quantity of gallium is a theoretical value that considerably depends on the impurities of aluminate liquor, especially on \(\text{V}_2\text{O}_5 \).

Vanadium content of bauxite also reaches an equilibrium concentration in Bayer liquor. This value is not indifferent to the amount of obtainable vanadium and the minimal concentration of vanadium that can be achieved at recovery. The former one is raw material for production of \(\text{V}_2\text{O}_5 \) and the latter one has an effect on the capacity of gallium plant (Figure 2.10-1).
Recovery technologies of gallium require the V_2O_5 concentration to be less than 0.15 g/dm3 in the aluminate liquor. To reach it the concentration of V_2O_5 should be increased up to 2 to 4 g/dm3 by dissolving vanadium salt in boiling aluminate liquor. Before dissolving vanadium salt the aluminate liquor is oversaturated with carbonate by evaporation and/or by feeding of liquid sodium hydroxide. Under given conditions dissolving of vanadium salt is selective namely its carbonate content doesn't dissolve but its vanadium, phosphorus and fluoride content does. So the conditions of forming of vanadium-phosphorus-fluoride triple salt can be reached. Under these circumstances triple salt formed is easier to settle, filtrate and centrifuge.

Results are double, on the one hand the V_2O_5 content of precipitated V-salt is higher, on the other hand the V-content in the basic material of gallium production is lower than the critical level.

2.10.3.2 Amalqam cathode method

Using current, metallic sodium forms from sodium hydroxide solution and it produces amalgam with mercury. The electrode potential of the sodium amalgam is sufficient to reduce the gallium(III) ions to metal gallium and to deposit this gallium on the sodium amalgam. So the first step of deposition of gallium is the electrolysis with amalgam cathode method from sodium.
aluminate solution having lowered vanadium and carbonate content. In the electrolytic cell the cathode is a lamella system coated with sodium amalgam. This system increases the surface of the cathode with more than one order (Figure 2.10-2.). The cells are in series connection and the sodium aluminate solution is parallel fed to each cells continuously. The sodium amalgam with the formed gallium is drained periodically in a closed system. The sodium amalgam can be decomposed with water in a stirred and indirect heated tank. In this case sodium as the most negative electrode potential metal forms and it is the solvent of gallium. So gallium content of the forming sodium gallate solution is about 100 times higher than it was in aluminate liquor.

![Figure 2.10-2
Electrolytic cell](image)

After evaporation and filtration of sodium gallate solution the gallium content can be deposited by a repeated electrolysis but here a solid cathode or cementation by aluminium is used.

2.10.3.3 Aluminium cementation process

The gallium content of aluminate liquor can be obtained with cementation by aluminium. Gross process taking place (not considering secondary reactions):

\[
Al + [Ga(OH)₄]^- \rightarrow Ga + [Al(OH)₄]^- \quad (2)
\]

Technological study of cementation requires to theoretical
analyse of gross process and the practical implications should be
 taken into consideration, too. The following partial reactions
can be described, where the (Ga) marks the gallium bath.

\[
\begin{align*}
\text{Al} + (\text{Ga}) & \rightarrow \text{Al(Ga)} \quad \{3\} \\
\text{Al(Ga)} + 4*\text{OH}^- & \rightarrow (\text{Ga}) + [\text{Al(OH)}_4]^- + 3*e^- \quad \{4\} \\
(Ga) + [\text{Ga(OH)}]^- + 3 \text{ e}^- & \leftarrow \rightarrow (Ga) + \text{Ga} + 4*\text{OH}^- \quad \{5\}
\end{align*}
\]

During cementation the sequence of these partial reactions is
fixed, reactions \{3\} and \{4\} being irreversible but reaction \{5\}
is reversible. In case when aluminium concentration is too low,
not only a reduction of the gallate ion may fail but also a
dissolution of the gallium bath may take place depending on the
value of the electrode potential \{5\}. Purified aluminate liquor
is loaded into a tank mounted stirrer which contains gallium bath
metal, too. This equipment is called cementator. To reach proper
aluminium concentration of bath metal, aluminium metal is fed
automatically. Electrode potential of forming gallium is
sufficient to cementate the gallium content of the aluminate
liquor and to precipitate on the metal bath. A part of
precipitated metal gallium increases the quantity of the metal
bath and the other part of it becomes metallic mud. This metallic
mud can be separated with filtration and can be dissolved in
sodium hydroxide solution. The gallium can be recovered from the
obtained sodium gallate solution with repeated cementation.

2.10.4 Purification of gallium

The purity of raw gallium obtained from sodium gallate solution
is only about 98 to 99 \%.

Impurities - namely 1 to 2 \% zinc, several tenth \% aluminium and
the others - having higher electronegativity than gallium have to
be removed from at user's request. These impurities are removed
with acidic dissolution using generally hydrochloric acid in an
equipment mounted stirrer and sometimes electrodes. After acidic
treatment gallium purity is usually 99.99 \%.

Higher gallium purity can be achieved by electrolytic refining.
The electrolyte is pro anal grade sodium hydroxide and the
gallium metal should be purified is connected as an anode. The
gallium passes into the solution and deposits on the cathode. The
purity of the so refined gallium achieves up to 99.9999 \%.
(Figure 2.10-3.) After electrolytic refining further purification
of gallium is possible by fractional crystallization. During
crystallization impurities are concentrating in the liquid phase
and the purity of crystal goes up to 99.99995 \%. If the users
need gallium with low oxygen content the crystallization is done
after a heat treatment in vacuum.
2.10.5 Production of gallium(III) oxide

Production of different gallium compounds 99.99 - 99.999 % gallium(III) oxide is necessary as a raw material. In the applied process gallium as the anode is dissolved in sulphuric acid and forms gallium sulphate. Gallium is used as a cathode, too. At electrolytic dissolution of the gallium minimum 90 % current efficiency can be achieved and the depositing amount on the cathode is minimal if the concentration of the sulphuric acid electrolyte is higher than five moles. Alum type ammonium gallium sulphate can be precipitated by means of ammonium sulphate or ammonium hydroxide from the formed gallium sulphate solution which can be purified by recrystallization and then it can be decomposed to gallium trioxyde at 1000 °C.
References

CHAPTER 3

QUALITY CONTROL AND MATERIAL TESTING
3.1 GENERAL OVERVIEW OF THE TECHNIQUES OF QUALITY CONTROL IN THE FIELD OF SPECIAL PRODUCTS

A. Csanády

In case of aluminium hydroxides and oxides in our terminology "special products" we are dealing partly with systems belonging to the great family of the two phase colloidal alumina-water or alumina-air systems. Not only the gelatinous aluminas, the hydroxides and oxide hydroxides, but also the transition aluminas are thermodynamically unstable forms, some types are also X-ray amorphous. The only thermodynamically stable oxide of aluminium is corundum.

It means that in most cases we are dealing with material systems which are hardly dependent on the method of preparation and which may undergo different phase transformations if the main parameters, i.e. temperature and water vapour pressure are changed.

The second important fact to be considered is the state of our solid material namely its powder form. It means that the solid phase depending on the fabricating process is present as discrete particles which may have different sizes, different structures and can be differently agglomerated etc.

The measurements characterizing the quality of the powders have to be classified in different groups, and very often the measured properties are not independent of each other.

One can describe peculiarity of the individual particles or individual units of the powder samples. The common features of the powder particles should be considered separately. Quality control itself is mainly dealing with the functional properties of the products made out of the powder base (Table 3.1.-1).
3.1.1 Characteristics of the individual units of powders

3.1.1.1 Summary of the characteristics of individual unit of powders further their investigation methods

Table 3.1-1
Characteristics of the individual units of the powders

<table>
<thead>
<tr>
<th>Feature</th>
<th>Method</th>
<th>Electron diffraction</th>
<th>High resolution transmission electron microscopy</th>
<th>Scanning electron microscopy</th>
<th>Electron-probe microscopy micro-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>roughness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>state of aggregation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.1.2 Atomic structure

The atomic structure of the individual powder particles is in the µm range and below. Crystal structure and orientation of very small particles also in the range of some nanometers can be identified only by modern transmission electron microscopes, by electron diffraction technique.

In transmission electron microscopy a monochromatic beam of electrons is accelerated through a thin specimen which is usually a single crystal of 0.1 - 0.5 µm thick or less. On the exit side of the specimen several diffracted beams are present in addition to the transmitted beam, and these are focussed by the objective lens to form a spot pattern in its back focal plane. The diffracted beam arise because the incident electrons are scattered by the atoms of the crystal and the scattered electrons are in phase (that is reinforced) in certain directions in the crystal.

The conventional types of diffraction patterns produced in
transmission in electron microscope can be of three different types:

1. ring-pattern of polycrystalline specimen
2. spot pattern of single-crystal region of the specimen

In general, spot and Kikuchi patterns will be taken from a specific area of the specimen and are known "selected area" diffraction patterns (SADP's). By tilting the "crystals" around the reciprocal lattice vectors in the microscope, further by necessary projections of these patterns, the reciprocal unit cell can be obtained and the real crystal structure can be deduced.

3.1.1.3 Morphology

According to the original Greek interpretation, morphology means a science dealing with the arrangement and connections of particles building the material. By world morphology are meant all spatial orders which are originated not by the relation of atomic points but by those of surfaces: from nm orders of magnitude, up to the range of visible dimensions. In order to possess scientific cognition of the morphology synthesized data of several disciplines are required. Among these the most important information generally used in the field of special products are as follows:

- grain size
- grain form and structure of the grain surface
- porosity and pore size distribution
- specific surface area

As higher the spatial resolution of the new investigation methods as more details can be given. Recently it is well known that in catalysis rough surfaces do chemistry. Roughness in that case is equal to 1/packing density. Closepacked surfaces (from the atomic arrangement point of view) has very low activity. The more open a surface is the higher its flexibility will be, namely during chemisorption the adsorbed molecules restructure the surface. In the case of an oxide-metal catalyst i.e. Ni on Al₂O₃ all the chemistry occurs at the oxide-metal interface (Somorjai).

3.1.1.4 Chemical composition

The best technique to determine the composition of individual particles is connected to the new generation of electron microscopes which has been specially designed to take full benefit of the analytical signals excited by the electron beam in the submicron samples of interest. "Analysis" refers to different degrees of information: the most generally accepted signification for chemical analysis consists of recognizing the specify of a given element (iron for instance) and to evaluate its relative concentration (% Fe) in the volume of interest. It can also
concern more refined types of information, such as valence state of the element (Fe^{++} or Fe^{+++}), the environmental symmetry of its site (tetrahedral or octahedral...), its short or long range surroundings.

"Submicron" means some typical extension value (length, or area, or volume) with reference to a specific specimen feature; it associates scale and localization. Roughly speaking, 1 nm3 of matter contains several tens of atoms and 1 µm3 several 10^{16} atoms. Such an enormous reduction of the analyzed mass, down to the 10^{-20} g has been made possible by improvements in area localization (electron microprobe of smaller size) and depth localization (very thin specimens for thin foil studies, or small escape depth of the recorded radiation for surface studies).

In Table 3.1-2 the most important features of the powders to be determined and the methods being the most important in the characterization of the special products are shown. All these techniques will be discussed in details in Chapter 3.7 and 3.8.

3.1.2 Powder features

3.1.2.1 Powder features and their investigation methods

<table>
<thead>
<tr>
<th>Feature</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase structure</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td></td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>Chemical composition</td>
<td>X-ray fluorescence analysis (XFA)</td>
</tr>
<tr>
<td></td>
<td>Atomic absorption spectrometry (AAS)</td>
</tr>
<tr>
<td></td>
<td>Inductive coupled plasma technique (ICP)</td>
</tr>
<tr>
<td>Chemical state of the surface</td>
<td>X-ray photoelectron spectroscopy (XPS)</td>
</tr>
<tr>
<td>Surface area</td>
<td>Gas adsorption (BET)</td>
</tr>
<tr>
<td>Porosity</td>
<td>Mercury porosimeter</td>
</tr>
<tr>
<td>Chemical solubility</td>
<td>Classical chemistry</td>
</tr>
</tbody>
</table>
Table 3.1-2b
Features of the powders (aerosol or gel)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength of particles</td>
<td>Measurement of the Attrition index</td>
</tr>
<tr>
<td>Flowability</td>
<td>Angle of flow</td>
</tr>
<tr>
<td>Dusting</td>
<td>Artificial dusting</td>
</tr>
<tr>
<td>Size distribution</td>
<td>Direct and indirect methods</td>
</tr>
<tr>
<td>Mean size</td>
<td></td>
</tr>
<tr>
<td>Loss of ignition</td>
<td>TG, DTG, DTA</td>
</tr>
</tbody>
</table>

3.1.2.2 X-ray diffraction (XRD)

X-ray powder diffraction is a technique which uses the diffracting power of crystals for X-ray to obtain information of a great number of individual crystals i.e. powders particles. In case of differently prepared and treated samples all the information produced by earlier measurements on monocrystals or natural or artificial "standards" further mathematical treatments have to be used in quantification of the structural observations.

3.1.2.3 Infrared spectroscopy

The absorption of the infrared spectral regions provides information of chemical binding state of the sample. The majority of analytical applications and so thus its application to the gelatinous aluminas are confined to a portion of the middle infrared radiation extending from 4000 to 400 cm⁻¹ (wave number) or 2.5 - 50 µm (wavelength). The infrared spectra of oxides and hydroxides: gibbsite, bayerite, boehmite, diaspore, corundum are well known and they can be used in the procedure of phase identification also in case of a poor crystallinity of the samples.

3.1.2.4 Chemical analysis by X-ray fluorescence

The main advantage of this technique is that the powders have not to be solved. XRF is one of the most widely used of all analytical methods for the qualitative identification of elements having atomic numbers greater than oxygen (>8) in addition it is often employed for semiquantitative or quantitative elemental analysis as well.

A high priority for XRF analytical technique was given also by
the International Standardization Organization (ISO)*.

In the last years the performance characteristics of wavelength dispersive X-ray fluorescence spectrometers have been improved. Significant decreases in the detection limits of most elements normally determined in alumina have been achieved. The lower detection limits now achievable allow of adequate sensitivity when using fused beads. This technique facilitates the preparation of synthetic calibration standards using pure materials. Use of these synthetic standards coupled with virtual elimination of matrix effects provides an excellent basis of a standard procedure. The determination of SiO₂, Fe₂O₃, Na₂O, CaO, TiO₂, V₂O₅, P₂O₅, Ga₂O₃, MgO, MnO₂, and ZnO can be carried out.

3.1.2.5 Atomic Absorption Spectrometry and Inductive Coupled Spectrometry

Atomic Absorption Spectrometry (AAS) and Inductive Coupled Spectrometry (ICP) are the most important analytical techniques in case of which the powder material to be investigated has to be solved.

In Table 3.1-3 a comparison of the different techniques concerning sensitivity (ng/mL) for Selected Elements is given.

<table>
<thead>
<tr>
<th>Element</th>
<th>AAS, Flame</th>
<th>AAS, Thermal</th>
<th>AES, Flame</th>
<th>AES, ICP</th>
<th>AFS, Flame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>30</td>
<td>0.005</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>As</td>
<td>100</td>
<td>0.02</td>
<td>0.0005</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>0.02</td>
<td>0.1</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>Cd</td>
<td>1</td>
<td>0.0001</td>
<td>800</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>3</td>
<td>0.01</td>
<td>4</td>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td>Cu</td>
<td>2</td>
<td>0.002</td>
<td>10</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>5</td>
<td>0.005</td>
<td>30</td>
<td>0.3</td>
<td>8</td>
</tr>
<tr>
<td>Hg</td>
<td>500</td>
<td>0.1</td>
<td>0.0004</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1</td>
<td>0.000002</td>
<td>5</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>Mn</td>
<td>2</td>
<td>0.0002</td>
<td>5</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Mo</td>
<td>30</td>
<td>0.005</td>
<td>100</td>
<td>0.2</td>
<td>60</td>
</tr>
<tr>
<td>Na</td>
<td>2</td>
<td>0.0002</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
<td>0.02</td>
<td>20</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>10</td>
<td>0.002</td>
<td>100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sn</td>
<td>20</td>
<td>0.1</td>
<td>300</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>V</td>
<td>20</td>
<td>0.1</td>
<td>10</td>
<td>0.2</td>
<td>70</td>
</tr>
<tr>
<td>Zn</td>
<td>2</td>
<td>0.00005</td>
<td>0.0005</td>
<td>2</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*a Nanogram/milliliter = 10⁻³ µg/ml = 10⁻³ ppm.
*b AAS = atomic absorption spectroscopy;
AES = atomic emission spectroscopy;
AFS = atomic fluorescence spectroscopy;
ICP = inductively coupled plasma
3.1.2.6 Strength of particles

Depending on the technology powder particles may be together as a loose attachment or the solid particles combine forming agglomerates. **Breakage** is the reverse of agglomeration, when a single particle is broken into several smaller units. The term **attrition** is used where only very small fragments are produced by erosion of the corners, edges and protrusions of the particle. Breakage and attrition are undesired in the practice of Bayer process but are very important possibilities in the case of special aluminas.

The strength of the particles can be expressed by the s.c. attrition index. Flowability, dustiness and attrition index are measurements not standardized yet. Procedures examined for the determination of dustiness and attrition index have indicated high dependence on the equipment design, materials of construction and surface finish.

3.1.2.7 Particle size measurements

The **particle size measurements**, further the measurements of the particle size distribution are possible by great many direct and indirect techniques. A good comparison of the indirect techniques is given by T. J. Davies in the Alumina Quality Workshop 1990 (Table 3.1-4).

The chemical state of the surface is very important in many cases where the surface is playing an important role so is it in the case of the powder-like materials. The topmost atomic layers are the part of a solid which interacts with its environment and can be very different from the material bulk. **XPS**, of all the surface techniques is probably the most powerful and easy to use for macroscopic, semimicroscopic applications. When combined with ion etching, which enables stripping of the surface of a material, atomic layer by atomic layer, very accurate profiles can be obtained with sub nanometer depth resolution.
Table 3.1-4a
Comparison of particle size methods for aluminia and hydrate analysis[4]

<table>
<thead>
<tr>
<th></th>
<th>Coulter Principle</th>
<th>Laser</th>
<th>Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment cost</td>
<td>≈A$60 000</td>
<td>≈A$50 000</td>
<td>≈A$5000</td>
</tr>
<tr>
<td>Productivity</td>
<td>6 - 15</td>
<td>up to 80</td>
<td>8</td>
</tr>
<tr>
<td>Calibration</td>
<td>Latex solution</td>
<td>Not required</td>
<td>Rarely done:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>standard glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spheres</td>
</tr>
<tr>
<td>Principle of</td>
<td>Volume equivalence</td>
<td>Projected</td>
<td>Physical</td>
</tr>
<tr>
<td>operation</td>
<td>diameter. All</td>
<td>area diameter.</td>
<td>separation</td>
</tr>
<tr>
<td></td>
<td>particles have</td>
<td>All particles</td>
<td>Not all</td>
</tr>
<tr>
<td></td>
<td>opportunity to go</td>
<td>must go</td>
<td>particles</td>
</tr>
<tr>
<td></td>
<td>through the</td>
<td>through the</td>
<td>go through</td>
</tr>
<tr>
<td></td>
<td>opportunity cell</td>
<td>cell</td>
<td>sieve</td>
</tr>
<tr>
<td>Sample size</td>
<td>0.015 to 0.09 g</td>
<td>1.0 to 2.0 g</td>
<td>50-100 g</td>
</tr>
<tr>
<td></td>
<td>in 250 ml water</td>
<td>in 350 ml</td>
<td>dry</td>
</tr>
<tr>
<td>Sampling error</td>
<td>Large</td>
<td>Medium</td>
<td>Small</td>
</tr>
<tr>
<td>Range, microns</td>
<td>1.5 to 180</td>
<td>5.8 to 564</td>
<td>38-150</td>
</tr>
<tr>
<td></td>
<td>(variable - can</td>
<td>(16 fractions)</td>
<td>(up to 19</td>
</tr>
<tr>
<td></td>
<td>ask for 256</td>
<td></td>
<td>fractions)</td>
</tr>
<tr>
<td>Precision, 2 σ</td>
<td>1.2 %</td>
<td>0.5 %</td>
<td>0.9 %</td>
</tr>
<tr>
<td>at 10 % -45 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1-6b
Comparison of Particle Size Methods for Alumina and Hydrate Analysis
(continue) [4]

<table>
<thead>
<tr>
<th>Coulter Principle</th>
<th>Laser</th>
<th>Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference method</td>
<td>Correlation with sieves diminishes below about about 75 µm.</td>
<td>Accuracy diminishes below about about 75 µm.</td>
</tr>
<tr>
<td></td>
<td>diminishes above about 90 µm</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate level of operator skills.</td>
<td>No special skills required to operate</td>
<td>Low skill requirement for use</td>
</tr>
<tr>
<td>Tedious to operate</td>
<td>Operating factor</td>
<td>Operating factor</td>
</tr>
<tr>
<td>Operating factor about 90 %</td>
<td>99 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Not affected by: particle composition surface texture refractive index</td>
<td>Affected by particle perimeter geometry sharp edges give higher scattering</td>
<td>Versatile - easily adapted for other materials, e.g., pulverised coal</td>
</tr>
</tbody>
</table>

3.1.2.8 Specific surface area and porosity

Great many methods were developed for measuring the specific surface area which is one of the most important powder characteristic. Details of the main techniques namely the gas adsorption ones and the solution adsorption methods will be given
later. Anyway adsorption from solution appears to have great potential, too. Different physical methods are nowadays also available for the measurement of this characteristic.

It is obvious that pores can be understood as a dispersed failing of material and hence the internal surfaces existing in a material are the pores to be measured. The pores, as well as the powder particles have mean sizes and size distributions to be measured.

3.1.2.9 Chemical solubility

Chemical solubility is influenced by the composition, temperature of the solute, further the agitation and heat transfer during the process. Special case is the alumina solubility in the electrolyte of the smelters.

3.1.2.10 Loss of ignition

Loss of ignition is a well standardized measurement in the characterization of aluminas. Special aluminas may be treated in thermo-analysers also showing the kinetic of the loss of surface wetness.
3.1.3 Characterization of products - functional properties - made of powder

Table 3.1-5
Characterization of the products - functional properties - made of powders

<table>
<thead>
<tr>
<th>Adsorbers</th>
<th>A sorption capacity, aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalysts</td>
<td>Catalytic activity, aging</td>
</tr>
<tr>
<td>Fillers</td>
<td>Wetability</td>
</tr>
<tr>
<td>Composites</td>
<td>Mechanical, thermal, optical, electrical and chemical properties</td>
</tr>
<tr>
<td>Ceramics</td>
<td>Hardness, brittleness, toughness (mechanical properties)</td>
</tr>
<tr>
<td>Abrasives</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td></td>
<td>Dielectric properties</td>
</tr>
<tr>
<td></td>
<td>Thermal expansion, thermal conductivity</td>
</tr>
<tr>
<td></td>
<td>Melting point</td>
</tr>
<tr>
<td></td>
<td>Transparency (optical properties)</td>
</tr>
<tr>
<td></td>
<td>Density, shrinkage</td>
</tr>
<tr>
<td></td>
<td>Corrosion properties</td>
</tr>
<tr>
<td></td>
<td>Biological activity</td>
</tr>
<tr>
<td>Different</td>
<td>Chemical properties</td>
</tr>
<tr>
<td>chemical products</td>
<td></td>
</tr>
</tbody>
</table>

The functional properties are partly in correlation with the powder features mainly in those cases where the powder itself is used for a given function (adsorbers, fillers etc). In other cases the technology of the product made of the powders is dependent of the physical and chemical features not only of the individual but also of the common ones.

References

3.2 PHASE ANALYSIS OF THE TRANSITION ALUMINAS

I. Sajó

3.2.1 Phases of the Al₂O₃ - H₂O system

The main goal of this paper is to provide a general overview of the possibilities and limitations of phase analysis of industrially significant alumina chemicals. For this reason phases expected to encounter at room temperature and atmospheric pressure will be covered. Similarly, phase analytical methods of merely scientific importance may be touched upon, but only the ones with practical significance will be discussed.

Those who feel attracted by more exotic phases or instrumental techniques are referred to the excellent papers as [5-7].

Space limitations preclude a detailed discussion of the material covered in the lecture. For a more extensive treatment of the topic the devoted may find useful the following books:

Al₂O₃ - H₂O system is chemically a simple one: all the three elements exhibit a single, stable oxidation state and only stoichiometric compounds are formed. This gives three compounds with different degree of hydration: the aluminium hydroxide or alumina trihydrate [Al(OH)₃ or Al₂O₃·3H₂O], the aluminium oxy-hydrate or alumina monohydrate [AlO(OH) or Al₂O₃·H₂O] and the anhydrous alumina or aluminium oxide (Al₂O₃). But simplicity ends here. All the three compounds have several polymorphic forms. There are three well established polymorphs of aluminium trihydrate while the monohydrate is only dimorphic.

For the polymorphs of Al₂O₃ the better half of the Greek alphabet is used up so far, and the other half may come handy later on.
3.2.1.1 Crystal Structure

Aluminium trihydroxides

The most frequent of the three polymorphs is the gibbsite (=hydrargillite), the principal component of the lateritic bauxites. In the Bayer process trihydrate is also precipitated in the form of gibbsite. Natural gibbsite usually exhibits a pseudohexagonal mica-like tabular crystal form with excellent basal cleavage. The crystal lattice of the gibbsite is made up of double layers of \([\text{OH}]^-\) ions, with \(\text{Al}^{3+}\) ions occupying the two-thirds of the octahedral sites within the layers. The aluminium ions show a hexagonal arrangement in the plane of the layers. The hydroxyls of the adjacent double layers are situated opposite each other with a slight displacement. Monoclinic symmetry of the gibbsite lattice is the result of this deviation from the hexagonal close packing of the \([\text{OH}]^-\) ions. The double layers are held together by the hydrogen bridges formed between hydroxyls. Sequence of the \(\text{OH}\) groups in the direction of the \(c\) axis (i.e. perpendicular to the layer planes) is \(\text{AB-BA-AB-BA}\).

Bayerite, an other polymorph of \(\text{Al(OH)}_3\) is also characterized by monoclinic symmetry. It is known to occur as a mineral, but a very rare one and has no industrial significance. Synthetic bayerite is also of lesser commercial importance. The crystal structure of bayerite is similar to that of the gibbsite. It is built of the same double layers but with a different stacking order. The hydroxyl ions of the adjacent layers fit into the depressions between the hydroxyls of the opposite one resulting in a layer sequence of \(\text{AB-AB-AB}\).

Nordstrandite is a triclinic polymorph of \(\text{Al(OH)}_3\), a rare mineral and synthetic product of no commercial use. Its structure is also based on the same double layers with the stacking order being different from the previous ones.

Aluminium Oxide Hydroxides

Diaspore and boehmite, the two structural modifications of \(\text{AlO(OH)}\) represent major constituents of certain bauxite types.

Diaspore a thermodynamically stable modification exhibits an orthorhombic symmetry. Its structure is based on the hexagonal close packed (HCP) sublattice of the oxygens with the aluminium sitting in the octahedral sites.

The structure of boehmite is characterized by an oxygen sublattice of cubic packing. Boehmite also has an orthorhombic symmetry.

From amorphous aluminium hydroxide gel pseudoboehmite, a poorly crystallized phase with non-stoichiometric composition can be prepared. Its X-ray diffractogram shows broad reflections that
coincide with the major reflections of boehmite. However it rather seems to be an intermediate stage in the aging of the aluminium hydroxide gels into a well crystallized aluminium hydroxide than a poorly crystalline form of boehmite. Chemically it is characterized with the formula $\text{Al}_2\text{O}_3\cdot n\text{H}_2\text{O}$, where n is about 2 - 2.5.

Aluminium oxides

The alpha-alumina (corundum) is the thermodynamically stable Al_2O_3 phase. Naturally occurring corundum is used as an abrasive. Fine coloured gem quality crystals of corundum are called ruby (red) and sapphire (blue and all other colours) and are highly valued gemstones. Corundum crystallizes in hexagonal-rhombohedral system. The structure of corundum is based on the hexagonal close packed oxygen sublattice. The relatively small aluminium ions occupy the two-thirds of the octahedral sites of the oxygen lattice.

All the other aluminas are metastable phases and are converted to corundum on high temperature. The corundum structure is maintained up to the melting point. (For a more detailed discussion see the paragraph Thermal Transformation.) Metastable Al_2O_3 phases are referred to as intermediate or transition aluminas.

Transition aluminas fall into subgroups according to their crystal structure, temperature of formation, degree of crystallinity, etc.

Transition aluminas formed in the temperature range of about 200 to 600 °C are the low temperature transition aluminas and they usually show a lower degree of crystallinity. These are the rho-, gamma-, eta- and chi-Al_2O_3. High temperature transition aluminas (usually formed between 600 and 1200 °C) are generally better crystallized. The kappa-, kappa'-, delta- and the theta-Al_2O_3 fall into this class.

According to their structure two main types are known. One of them is characterized by a more or less distorted spinel (cubic) lattice. To this type belongs the eta-, gamma- and delta-Al_2O_3, with tetragonally and the theta-Al_2O_3 with monoclinic deformed spinel lattice. Chi- and kappa-aluminas, the members of the other structure group are supposed to have a hexagonal structure. Rho-alumina is a nearly amorphous phase.

Before going in to a more detailed discussion, it is important to point out that most of these structures were determined from poorly crystallized phases from which fair sized single crystals can not be obtained. Accordingly, these structures are highly uncertain and not generally accepted.

Transition alumina particles are made up of a mosaic of more or less misoriented microdomains. The coherent crystallite size of the low temperature transition aluminas (gamma-, eta- and
chi-Al$_2$O$_3$) is typically less than 10 nm, as determined from the broadening of the X-ray diffraction lines. Thus the scattering volumes are not large enough to permit classical X-ray structural analysis. According to the EXAFS studies of Larue & al. [6] the short range order of the various transition aluminas (up to 1 nm) is very similar. The structural differences do not arise from the arrangement of the first, second or third aluminium or oxygen neighbour but from differences in stacking blocks of similar structure.

The above mentioned properties give an explanation why methods of structure investigation based on long-range order as well as the ones based on short range order have problems with characterization of those substances.

3.2.1.2 Thermal Transformations

On heating the hydrated alumina phases start to lose water and transform to various transition aluminas. Provided the temperature is high enough they all end up as corundum. But in the meantime they follow different sequences of transformation depending on their original structure and other circumstances.

The simplest is the case of the diaspore which transforms directly into alpha-Al$_2$O$_3$ at about 5-600 °C. This is facilitated by its structure, as the close packed hexagonal oxygen sublattice is very close to that of the corundum, and is preserved by and large across transformation.

The cubic oxygen lattice of the boehmite is preserved in transition alumina sequence and is rearranged only at the theta \rightarrow alpha-Al$_2$O$_3$ transformation:

boehmite \rightarrow gamma-Al$_2$O$_3$ \rightarrow delta-Al$_2$O$_3$ \rightarrow theta-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$

Bayerite and nordstrandite follow a sequence similar to the route c of the gibbsite:

(bayerite/nordstr.) \rightarrow eta-Al$_2$O$_3$ \rightarrow theta-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$

Thermal transformation of gibbsite to alpha-Al$_2$O$_3$ can follow three main sequences depending on the reaction circumstances (H$_2$O partial pressure, heating rate, particle size):

a/ gibbsite \rightarrow chi-Al$_2$O$_3$ \rightarrow kappa-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$

b/ gibbsite \rightarrow boehmite \rightarrow gamma-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$ \rightarrow theta-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$

c/ gibbsite \rightarrow rho-Al$_2$O$_3$ \rightarrow eta-Al$_2$O$_3$ \rightarrow theta-Al$_2$O$_3$ \rightarrow alpha-Al$_2$O$_3$

During calcination the three process can concurrently run and compete for a share resulting in aluminas composed of
several or nearly all of the above phases.

The structure of the transition aluminas in route 'a' (chi and kappa) is characterized by a hexagonal close-packed oxygen sublattice, similar to that of in the alpha-Al₂O₃. Anhydrous intermediate phases in the other two branches (gamma-, eta-, delta- and theta-) have a cubic close packed oxygen sublattice. The gamma and the eta phase share a rather similar structure, with nearly identical X-ray powder diffractogram. The only detectable difference is the <1,1,1> reflection (at 0.455 nm) being sharper for the eta and more diffuse for the gamma phase see Figure 3.2-5. The delta-Al₂O₃ has a tetragonal unit cell based on a spinel super lattice structure made up of gamma-Al₂O₃ cells. The theta-Al₂O₃ is known to be monoclinic, but can be regarded merely as a better ordered form of gamma-Al₂O₃ [8].

3.2.2. Phase Analysis

One can guess from the above structural characterization that transition aluminas gives hard time for the phase analyst. And as if it were not enough, he even can't rely on elemental analysis data either.

3.2.2.1 Phase identification

Transition aluminas in a given branch may not be regarded as discrete phases, but points of a more or less continuous transformation path. Thus the concept of 'pure phase' is not easily applicable to them. The degree of misorientation, the size of microdomains, and the ordering of the cationic sublattice are further variables, making classification even more difficult.

Lack of reliable reference data is another source of troubles, but this is partially a consequence of the lack of well defined pure phases.

3.2.2.2 Quantitative phase composition

Reliable phase identification - a prerequisite of quantitative phase analysis - is next to hopeless in a complex mixture of transition aluminas. Reference intensities - 'constants' of vital importance - vary on a broad range with the crystallinity of the phases. Reflections are usually broad and diffuse and a large proportion of them overlaps with reflections from other phases making intensity determination unreliable or impossible. Knowing the above difficulties and limitations it is hardly surprising that not too much attempt was made for solving this question.

Bagshaw & Welch [16] published a method for determination of quantitative phase composition of aluminas. They regarded it to
be "not fully quantitative", but it presents more serious problems, even with the "indication of trends" as well.

After all, what kind of answer can be expected to questions concerning the phase composition of alumina samples? What are the reasonable inquiries and what are the decent answers?

The discussion will be started with the X-ray powder diffraction (XRPD), as the most versatile phase analytical tool. Then other phase analytical methods will be presented to show what they can add to the results as obtained with XRPD (and for what price). According to our experiences, if the results given by XRPD measurements are not sufficient for a given purpose FTIR has the greatest potential to improve somewhat on the reliability of the data. Thermal analysis can answer only some very specific questions, and with a very low productivity (one to two measurement pro day). It is to be used only for a good reason.

3.2.2.3 X-Ray diffraction

After a careful investigation of the diffractograms from the pure phases (for which diffractograms are shown on Figures 3.2-1-8) the following possibilities were chosen for the identification and quantification of the transition aluminas:

chi-\(\text{Al}_2\text{O}_3 \): in the presence of eta- and/or gamma-alumina only the reflection at 0.211 nm can be used. Because of the poor crystallinity of the chi-alumina, minute quantities (about 10%) may remain undetected. At the same d-value the kappa-alumina also has a prominent peak. In samples containing kappa-\(\text{Al}_2\text{O}_3 \), the identification of chi-alumina (or differentiation from eta/gamma-\(\text{Al}_2\text{O}_3 \)) is not reliable.

kappa-\(\text{Al}_2\text{O}_3 \): This phase has several reflections (at 0.62, 0.211, 0.187 and 0.164 nm) which do not overlap with reflections from other phases and therefore it is easily detectable.

delta- and theta-\(\text{Al}_2\text{O}_3 \): Peaks at 0.273 and 0.180 nm show their presence, while only minor reflections can help to differentiate them: at 0.51 and 0.407 nm for the delta-\(\text{Al}_2\text{O}_3 \) and 0.545 and 0.284 nm for the theta-\(\text{Al}_2\text{O}_3 \). Intensity determination for these peaks is unreliable, making the calculation of delta/theta ratio highly uncertain.

gamma- and eta-\(\text{Al}_2\text{O}_3 \): Because of their nearly identical powder diffractograms in samples containing both phases XRPD allows only to recognize that at least one of them is present. In the phase composition results usually only the sum of these two phases can be given. All their reflections are more or less overlapping with peaks of delta- and theta-alumina, resulting in highly inaccurate intensity determination. Extreme variability of their reference intensity values and the errors of intensity determination are so high that they are best quantified as the difference of 100% and the sum of the other phases.
Figure 3.2.-1
X-ray diffractogram of gibbsite and bayerite

Figure 3.2.-2
X-ray diffractogram of nordstrandite
Figure 3.2.-3
X-ray diffractogram of pseudobehmite and boehmite

Figure 3.2.-4
X-ray diffractogram of diaspore
Figure 3.2.-5
X-ray diffractogram of gamma- and eta-alumina

Figure 3.2.-6
X-ray diffractogram of chi-alumina
Figure 3.2.-7
X-ray diffractogram of delta- and theta-alumina

Figure 3.2.-8
X-ray diffractogram of alpha-alumina
3.2.2.4 Differential Thermal Analysis

The thermoanalytical behaviour of transition aluminas is rather similar. After a rapid initial period (loss of the adsorbed water; Dm is highly dependent on the specific surface area, usually in the range of -1 to -6% to 300 °C) there is a continuous weight loss up to 1400 °C with a decreasing rate (Dm about 0.6-0.8% from 300 to 1400 °C). With mass spectrometric (QMS) detection of gaseous decomposition products it was shown that water is continuously formed over this temperature range (even above 1200 °C).

Onset of the α-Al_2O_3 transformation is usually between 1000 and 1250 °C depending on the type of the sample, as can be seen from the DTA curves. The other phase transformations do not exhibit any DTA effect.

3.2.2.5 Infrared Spectroscopy

According to their infrared spectra the transition aluminas fall into two main groups: one consisting of the gamma-, eta- and chi-aluminas, while the other being formed by the delta- and theta-Al_2O_3. They show broad absorption bands with not too much individual details. The variability of the spectra of individual samples of a phase may be greater than differences between members of a group.

α-alumina exhibits a quite different IR spectrum but this crystallographically well defined phase also shows a certain degree of variability: the intensity of the absorption band in the region of 650-800 cm$^{-1}$ depends to a high extent on the origin of the sample. (e.g. cf. the spectra published by Dorsey,[12] and Stegmann & al., [13])

The up-to-date Fourier-transform IR (FTIR) spectrometers expand the possibilities of the IR spectroscopy. They not only provide a significantly higher resolution, but can be coupled with sophisticated computerized processing of the FTIR scans.

References

3.3 Major, minor and trace element analysis of co-products and by-products in Bayer alumina production by chemical methods

É. Kálmán

Bayer technology involves great demands on investigation and analysis. Plant control and process control in mainly based on analytical measurements, too and that is why plant operation without analytical activities is unimaginable. For that very reason it is necessary to deal in detail with the analytical problems of the alumina production. The alumina is a "raw" material and the co-products (ceramic, special alumina, electrocorundum, alumina trihydrate, aluminium-sulphate etc.) and by-products (gallium, vanadium-pentoxid etc.) are the final products in this case.

The chemical analysis provides information about the elemental composition of the material tested. From the point of view of analytical chemistry alumina substantially differs from by-products for example mullite or aluminium-sulphate because while the latter ones are multi-component materials alumina is a homogeneous one. Other elements occurring in alumina are considered as contaminants. Major contaminants of the alumina are adhesive moisture, loss of mass and finally the Na₂O-content. Minor and trace contaminants of the alumina are of the 0.1 to 500 ppm order of magnitude.

3.3.1 The elemental composition of the co-products and by-products

The contaminating components in "raw" materials alumina

A number of contaminating components from the caustic solution segregate simultaneously with the alumina hydrate separation in Bayer alumina producing process, or they link to the large-surface precipitates (sorption) and cannot be totally removed even by washing. The contaminating components of alumina exercise disadvantageous influence on the utility of non-metallurgical special alumina, corundum, for example: Fe₂O₃ and Na₂O. Table 3.3-1 gives a survey about the contaminating components of alumina.

Examining the Table 3.3-1 it turns out that Na₂O is the highest contaminating component of the alumina if we leave out of consideration the moisture content. A part of this Na₂O content, the so called water-soluble Na₂O originates from insufficient washing of the caustic solution. Some products, for example pseudo-boehmite and catalyst support can be characterized by low Na₂O or the ceramic aluminas by low Na₂O, Fe₂O₃ and SiO₂ contamination.
Table 3.3-1
Contaminating components in alumina (%)

<table>
<thead>
<tr>
<th>Impurities</th>
<th>Moisture 300 °C</th>
<th>L.O.I. 1100 °C</th>
<th>Na₂O total</th>
<th>Na₂O w.sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>0,5-1,5</td>
<td>0,05-0,5</td>
<td>0,2-0,5</td>
<td>0,01-0,3</td>
</tr>
<tr>
<td>Minor</td>
<td>Fe₂O₃ SiO₂ TiO₂ ZnO Ga₂O₃ CaO SO₃</td>
<td>0,02 0,01 0,003 0,01 0,005 0,005 0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>V₂O₅ P₂O₅ MgO CuO MnO Cr₂O₃ NiO</td>
<td>0,001 0,001 0,001 0,001 0,0005 0,0001 0,0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.2 The contaminating components in co-products and by-products

Table 3.3-2 shows the co-products manufactured in Alumina Plants of HUNGALU Rt. and their contaminating components. From the point of view of analytical chemistry co-products do not differ from alumina because all of them are Al₂O₃ matrix.

Table 3.3-2
Special co-product produced in Plants of HUNGALU Rt.

<p>| ALD/LT Ceramic Alumina Activated Abrasive Electro- Fused |</p>
<table>
<thead>
<tr>
<th>family</th>
<th>aluminas</th>
<th>hydrates</th>
<th>aluminas</th>
<th>pastes</th>
<th>corundum</th>
<th>corundum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0,003-0,015</td>
<td>0,01-0,035</td>
<td>0,006-0,008</td>
<td>0,025-0,035</td>
<td>0,025-0,035</td>
<td>0,05-0,15</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0,003-0,017</td>
<td>0,01-0,045</td>
<td>0,01-0,02</td>
<td>0,025-0,035</td>
<td>0,03-0,04</td>
<td>0,10-0,18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,002-0,003</td>
<td>0,001</td>
<td>0,002</td>
<td>0,002</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂Ototal</td>
<td>0,0005-0,30</td>
<td>0,01-0,45</td>
<td>0,25-0,35</td>
<td>0,35-0,45</td>
<td>0,30-0,50</td>
<td>0,90</td>
</tr>
<tr>
<td>Na₂Ow.sol</td>
<td>0-0,03</td>
<td>0,05-0,15</td>
<td>0,03-0,04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moisture</td>
<td>0,2</td>
<td>0,1-0,3</td>
<td>11,0</td>
<td>0,25-0,10</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>L.O.I.</td>
<td>34,5</td>
<td>0,01-0,2</td>
<td>8-10</td>
<td>0,1-0,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>99,0-99,9</td>
<td>99,2</td>
<td>99,8</td>
<td>99,0</td>
<td>99,0-99</td>
<td>99,5</td>
</tr>
<tr>
<td>Al₂(OH)₃</td>
<td>99,5</td>
<td>99,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e - Al₂O₃</td>
<td>>90-95</td>
<td>>3</td>
<td>92-95</td>
<td>99-99,7</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Glassphase</td>
<td>19,5</td>
<td>19,5</td>
<td>19,5</td>
<td>19,5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.3-3 and Table 3.3-4 show the by- and co-products manufactured in alumina plants of HUNGALU Rt. and their contaminating components. From the point of view of analytical
chemistry by-products differ from alumina because they are multi-component materials.

Table 3.3-3
By-product produced in plants of HUNGALU Rt.

<table>
<thead>
<tr>
<th></th>
<th>Elettromullite</th>
<th>Zirkosit</th>
<th>Vanadium pentoxid</th>
<th>Ammonium metavanadate</th>
<th>Aluminium sulphate</th>
<th>Synthetic zeolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ %</td>
<td>74</td>
<td>45.3-50.0</td>
<td></td>
<td></td>
<td>17-18</td>
<td>28-30</td>
</tr>
<tr>
<td>SiO₂ %</td>
<td>24</td>
<td>12.2-14.0</td>
<td>0.3-0.5</td>
<td>0.20</td>
<td></td>
<td>31-34</td>
</tr>
<tr>
<td>TiO₂ %</td>
<td>0.07</td>
<td>0.08-0.10</td>
<td>0.3-1.0</td>
<td>0.10</td>
<td>0.005-0.01</td>
<td>0.025</td>
</tr>
<tr>
<td>Fe₂O₃ %</td>
<td>0.10</td>
<td>0.08-0.10</td>
<td>0.3-1.0</td>
<td>0.10</td>
<td>0.005-0.01</td>
<td>0.025</td>
</tr>
<tr>
<td>CaO %</td>
<td>0.15</td>
<td>0.35-0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO %</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O %</td>
<td>0.40</td>
<td>1.15-1.35</td>
<td>1.5-7.5</td>
<td>1.0</td>
<td></td>
<td>17-19</td>
</tr>
<tr>
<td>ZrO₂ %</td>
<td></td>
<td>33-40.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₂O₅ %</td>
<td></td>
<td></td>
<td>92-98</td>
<td>56.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅ %</td>
<td></td>
<td></td>
<td>0.03-0.10</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As %</td>
<td></td>
<td></td>
<td>0.02-0.08</td>
<td>0.03</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>SO₃ %</td>
<td></td>
<td></td>
<td>0.05-0.10</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture %</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.O.I. %</td>
<td></td>
<td></td>
<td></td>
<td>18-22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3-4
Co-product produced in plants of HUNGALU Rt.

<table>
<thead>
<tr>
<th></th>
<th>Gallium</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4N</td>
<td>5N</td>
<td>6N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.99</td>
<td>99.9999</td>
<td>99.9999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(bpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>12000</td>
<td>100</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>5000</td>
<td>100</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>2000</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>1000</td>
<td>500</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>1000</td>
<td>100</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1000</td>
<td>250</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1000</td>
<td>10</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>10000</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.2.1 The contaminating components in sodium aluminate liquors

While the alumina, caustic and soda concentration of a wide range of plant liquors must be continually monitored, impurities that build up in the closed loop of Bayer circuit must also be monitored. Anionic impurities such as chlorides and sulphates reduce the productivity of the process liquor and oxalate makes control of particle size in precipitation more difficult. Impurities such as SiO₂, P₂O₅, F, V₂O₅, ZnO and Ga₂O₃ must be monitored in the process liquor for optimum product quality control.

3.3.2.2 The contaminating components in water

Water associated with the power-house boiler drums are analysed to control impurity levels and the dosing of scale reducing reagents. Anionic impurities such as F⁻, Cl⁻, PO₄³⁻, SO₄²⁻ must also be monitored in water.

3.3.2.3 Determination of contaminating components of products

In the plants of HUNGALU Rt. modern instrumentation routinely used for chemical analysis includes:

- Atomic Absorption Spectrophotometer (AAS)
- Automatic Titrimetric System
- Inductively Coupled Plasma Atomic Emission Spectrometer (ICP)
- X-Ray Fluorescence Spectrometer
- Ion-Chromatograph (IC)
- Gas-Chromatograph (GC)
- Leco Sulphur/Carbon Analyser
- Photographic Spectrograph
- UV-visible Spectrophotometer.
Modern instrumentation now available can readily provide accurate, precise and rapid determinations. The production of high quality special grade alumina is only possible if rapid analyses and high skilled operators are used.

Table 3.3-5 shows comparison of the various analytical methods used for routine analysis of alumina products.

Table 3.3-6 shows methods for the determination of the contaminating components of alumina.

<table>
<thead>
<tr>
<th>Advantages and disadvantages of some instrumental methods for routine trace element analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical spectroscopy</td>
</tr>
<tr>
<td>Capital cost</td>
</tr>
<tr>
<td>Sensitivity</td>
</tr>
<tr>
<td>Speed of analysis</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>Matrix effect</td>
</tr>
<tr>
<td>Main advantage</td>
</tr>
</tbody>
</table>
Table 3.3-6
Methods for the determination of the contaminating components of alumina

<table>
<thead>
<tr>
<th>Components</th>
<th>Wet chemistry</th>
<th>AAS</th>
<th>ICP</th>
<th>OES</th>
<th>X-Ray fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O₆W.sol.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂Ototal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₂O₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CuO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO₂</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>B₂O₃</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F⁻</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* wet chemistry: spectrophotometry and ion-chromatography

3.3.3 Determination of components by classical chemical methods in alumina products

Chemical tests have to be carried out on sample prepared. International Standard Specification (ISO 2927-1973) specifies how to take the representative sample of alumina.
The dissolution or attach of the alumina does not mean an easy task. The most frequently used methods for attach can be divided into two groups:

- method by alkaline fusion
- method by acid attack under pressure.

Table 3.3-7 shows the International Standard Specifications used for the analysis of alumina.

Table 3.3-7

ISO standard methods used for analysis of alumina

<table>
<thead>
<tr>
<th>№</th>
<th>Component</th>
<th>Principle of the determination</th>
<th>Method</th>
<th>Field of application range</th>
<th>ISO Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Loss of mass at 300 °C</td>
<td>Drying of the test portion at 300 °C for 2 h and determination of loss of mass</td>
<td></td>
<td></td>
<td>803-1976</td>
</tr>
<tr>
<td>2.</td>
<td>Loss of mass at 1000 °C and 1200 °C</td>
<td>Ignition of two test portions previously dried at 300 °C one at 1000 °C and the other at 1200 °C, for 2 h</td>
<td></td>
<td></td>
<td>806-1976</td>
</tr>
<tr>
<td>3.</td>
<td>Na₂O</td>
<td>Fusion of the test portion with mixture Li₂CO₃ + Al₂O₃ or Li₂CO₃ + Al₂O₃, followed by dissolution in HCl, aspiration of the solution into a flame</td>
<td>Flame</td>
<td>1617-1976</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Preparation of solution for analysis</td>
<td>Alkaline fusion method</td>
<td></td>
<td></td>
<td>804-1976</td>
</tr>
<tr>
<td>5.</td>
<td>Fe₂O₃</td>
<td>Alkaline fusion, reduction of iron(III) to iron(II), formation of the iron(II)-1.10-phenanthroline complex, pH 3.5-4.2, photometric measurement at wavelength 510 nm</td>
<td>Spectrophotometric</td>
<td>>0.005</td>
<td>805-1976</td>
</tr>
<tr>
<td>6.</td>
<td>SiO₂</td>
<td>Alkaline fusion, formation of the oxidized molybdosilicate, selective reduction, photometric measurement at wavelength of 815 nm</td>
<td>Spectrophotometric</td>
<td>0.005-0.025</td>
<td>1232-1976</td>
</tr>
<tr>
<td>7.</td>
<td>TiO₂</td>
<td>Alkaline fusion test solution, formation of the titanium-diantipyryl methane complex, photometric measurement of the coloured complex at a wavelength of 420 nm</td>
<td>Spectrophotometric</td>
<td>>0.001</td>
<td>900-1977</td>
</tr>
<tr>
<td>No.</td>
<td>Component</td>
<td>Principle of the determination</td>
<td>Method</td>
<td>Field of application range</td>
<td>ISO Number</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>8.</td>
<td>V₂O₅</td>
<td>Alkaline fusion test solution,</td>
<td>Spectro-</td>
<td>0.0003-0.016 = 1618-1976</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxidation to V(V). Formation of</td>
<td>photometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vanadium N-Benzoyl-N-phenyl-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hydroxyl-amine complex. Extraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the violet coloured complex.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photometric measurement at a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wavelength of 524 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>P₂O₅</td>
<td>Preparation of solution from a</td>
<td>Spectro-</td>
<td>>0.0005 = 2829-1973</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>test portion by alkaline fusion</td>
<td>photometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and by dissolution in nitric acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(pH 2). Formation of the phospho-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>molybdic complex. Extraction by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-methyl-propan-1-01. Reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the complex by SnCl₂ in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>organic phase. Spectrophotometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>measurement at a wavelength of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>730 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Preparation</td>
<td>Method by hydrochloric acid attack</td>
<td></td>
<td>2073-1976</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of solution</td>
<td>for analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>under pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>ZnO</td>
<td>Alkaline fusion, treatment of</td>
<td>Spectro-</td>
<td>R</td>
<td>2072-1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the fused mass with HNO₃.</td>
<td>photometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Separation of the Zn in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>form of thiocyanate by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>extraction with methyl-isobutyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ketone. Re-extraction with HCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>solution. Formation of the PAN-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>zinc complex. Extraction of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAN-zinc complex with chloroform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and photometric measurement at a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wavelength of 560 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution by attack with HCl</td>
<td>AAS</td>
<td>2076-1976</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>under pressure aspiration of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the solution in acetylene air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>flame measurement c. the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>absorption of the 213.8 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>line emitted by zinc hollow-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cathode lamp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3-7
ISO standard methods used for analysis of alumina (cont.)

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
<th>Principle of the determination</th>
<th>Method</th>
<th>Field of application range</th>
<th>ISO Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>MnO (Mn)</td>
<td>Dissolution with hydrochloric acid under pressure. Aspiration of the solution in an air/acetylene flame and measurement of the absorption of the 279.5 nm line emitted by a manganese hollow cathode lamp</td>
<td>AAS</td>
<td>0.00026-0.0065 (Mn 0.0002-0.005)</td>
<td>3390-1976</td>
</tr>
<tr>
<td>13</td>
<td>CaO</td>
<td>Alkaline fusion. Precipitation of the calcium in alkaline medium with naphthyl-hydroxamic acid solution. Spectrophotometric measurement of the excess of naphthyl-hydroxamic acid at wavelength of 400 nm. Dissolution by attack with HCl under pressure. Addition of Na ions to stabilize the promotion of the emission of Ca and lanthanum ions or triethanolamine to increase the sensitivity. Aspiration of the solution into acetylene dinitrogen monoxide flame and measurement of the absorption 422.7 nm line emitted by a calcium hollow-cathode lamp. CaO contents greater than 0.03 acetylene/air flame can be used</td>
<td>Spectrophoto metric</td>
<td>>0.01 =</td>
<td>2069-1976</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>Dissolution by attack by H2SO4 under pressure. Separation of the fluorine by distillation. Formation of the blue coloured complex between F and alizarin complexone lanthanum chloride. Spectrophotometric measurement of the complex at a wavelength of 620 nm</td>
<td>Spectrophoto metric</td>
<td>>0.003 =</td>
<td>2828-1973</td>
</tr>
<tr>
<td>15</td>
<td>B2O3</td>
<td>Dissolution with H3PO4, separation of B by distillation as methyl borate. Formation of the red coloured complex between B and curcumin. Spectrophotometric measurement of the complex at a wavelength of 550 nm.</td>
<td>Spectrophoto metric</td>
<td>>0.0006 =</td>
<td>2865-1973</td>
</tr>
</tbody>
</table>
Chemical analysis of sodium aluminate liquors

In order to characterise the aluminate solutions their main components and impurities have to be analysed. Caustic soda (Na₂O·Caust·Al₂O₃) aluminium (Al₂O₃) content and the caustic molar ratio are determined by thermometric method. Thermometric titrator (THERMATIC) has been developed in ALUTERV-FKI. The instrument perceives the thermal effect following the chemical reaction and makes use of it to indicate the end point of titration. From among the impurities of the aluminate liquors the determination of iron, fluorine, vanadium, phosphorus, gallium, zinc, sulphate, chloride and the organic material is of importance because Bayer process is cyclic, soluble impurities accumulate in the process liquor stream. Cationic components can be analysed by spectrophotometric and AAS methods, while the anionic components by classical and chromatographic methods. Conventional analysis requires different techniques for each of the anions, the major advantages of these methods are that usually the equipment is not expensive and the cost per test is low. The disadvantage of each technique is that it takes long analysis time. Ion-chromatography offers a fast technique for the analysis of inorganic (F⁻, Cl⁻, SO₄²⁻ etc.) and organic (oxalate, formate, acetate, malonate and succinate etc.) ions. Many of the ions can be analysed simultaneously. The problems to overcome are associated with the solubility of the samples in the eluents used for the resolution of all required compounds in complex matrices.

In addition individual organic components may also be measured by means of gas chromatography. Gas chromatography provides a rapid, accurate method. Sample preparation is labour intensive and the equipment needs a very good expert to handle.

3.3.4 Anions in the Bayer process determined by ion-chromatographyc methods

The term ion-chromatography (IC) means an analytical technique for separation, detection and quantization of ionic species. The determination are faster than conventional methods. Ion-chromatography is a separation technique: analytes of interest are separated from each other and from most interfering substances, before quantization, so major ions can often be analysed sequentially in one run. The sample injected into the ion-chromatograph and carried through an ion exchange separation column by an ionic solution termed the eluent. A precision pump maintains constant flow rate. After separation the ions are carried by the eluent into a detector which responds to the amount of each component. The resultant "chromatogram" identifies each component by retention time and quantization is based on the magnitude of the response. The most common detection mode being the measurement of the changes in ionic conductivity of the eluate. In ALUTERV-FKI Ltd. there is a Bio-Rad HRLC system as a non-suppressed ion-chromatograph, used in "isocratic" mode. Ion-chromatography is now in routine use in our laboratory to analyse
3.4 X-RAY FLUORESCENCE SPECTROMETRY

J. Vitéz

3.4.1 X-ray fluorescence spectrometry

Following the discovery of X-rays in 1895 by Wilhelm Conrad Röntgen the new type of radiation gained importance in various fields of analytical and materials science. X-ray emission spectroscopy, one of its major applications is a widely accepted method of instrumental elemental analysis. When an element is bombarded with an ionizing radiation, vacancies are generated in its inner electron shells. As the vacancies are refilled with electrons from the outer shells, characteristic X-rays are emitted. X-ray emission spectroscopy is based on the information carried by the wavelength and intensity distribution of this secondary radiation.

3.4.1.1 Production of characteristic radiation

For the generation of characteristic X-rays the following methods are commonly used:

- The sample is excited by a focused high energy beam of electrons (Electron Probe Microanalysis, EPMA). Useful for the elemental analysis of selected small areas, thus primarily serves research purposes. With the Particle Induced X-ray Emission (PIXE) the energy spectrum generated by a particle beam is analyzed. Present nuclear microprobe facilities are not simple and rugged enough for routine analytical use.

- X-rays can be generated by gamma-radiation from radioactive isotopes (e.g. ^{55}Fe, ^{241}Am) as well. This method can be applied in portable instruments if only a few predefined elements are to be determined.

- When multicomponent samples are to be analyzed with a higher accuracy, for the excitation of the sample the radiation from an X-ray tube is applied. This method is referred to as the X-ray Fluorescent Spectrometry (XRF).

X-ray sources for the use in XRF spectrometry should conform to the following requirements:

- the wavelength of the primary beam has to be shorter than that of the characteristic radiation of all the elements to be analyzed
oxalate, formate and acetate in sodium aluminate liquors.

3.3.5 Quality assurance in analytical chemistry

A quality assurance is an analytical protocol. However, there is a clear need for its wider use by analytical chemists engaged in analytical measurements. The samples analyzed must be valid if the results obtained for them are to be intelligently interpreted. Expressed results should include the average measured value written with the standard deviation. The reliability and acceptability of chemical analytical information depend upon the rigorous completion of all the requirements stipulated in a well-defined protocol. Such protocols will describe the documentation requirements of the study including sampling procedures, measurements, confirmation, and validation. Today it is necessary to communicate the results of such measurements in a way that permits open inspection of their intrinsic weaknesses and strength. Attainment of a state of statistical control of the measurement system must be demonstrated by the analyst. The key role of reliable reference materials in the validation of analytical measurements cannot be over-emphasized. There is international standard specification (Nr. 5725-1981) to determine repeatability and reproducibility of applied analytical procedures. Cochran’s maximum variance test and the Dixon’s outlier test should be carried out to detect and correct problems.
- high long term stability (usually better than 0.1%) is required
- allow a high voltage operation (at least 60 kV) to achieve high intensity
- primary beam may not contain characteristic radiation

3.4.1.2 The spectrometer

The construction of X-ray spectrometers follow two basic design types, the simultaneous and the sequential. The simultaneous or multichannel spectrometers are equipped with separate channel ("monochromator") for each element to be analyzed. They are characterized by:

- high counting efficiency
- high resolving power
- high long term stability
- high sample throughput.

The sequential spectrometers have a single channel which is tuneable to any of the elements within its detection range. The advantage of this arrangement is the higher flexibility and lower capital cost.

3.4.2 Quantitative analysis

Reliability (i.e. accuracy and reproducibility) of the quantitative analysis with XRF spectrometry basically determined by the sample preparation and calibration. These areas deserve a closer look for a better understanding - and a tighter control - of the reliability of the results.

3.4.2.1 Sample preparation

Techniques suitable for sample preparation are determined by the physical and chemical characteristics of the sample and the required accuracy of the analytical results. For this reason the contents of this paragraph will be restricted to a general summary of the problem and only the techniques important for the preparation of alumina samples will be discussed in depth.

Techniques available for preparing samples of minerals and ores fit into three main categories:

- powder pellet pressing
- fusing and bead casting
- dissolution.

The main features of this techniques are summarized in Table 3.4-1.
Table 3.4-1
Sample preparation

<table>
<thead>
<tr>
<th>sample</th>
<th>quantity (g)</th>
<th>Preparative steps</th>
<th>weigh in</th>
<th>IRF-SPECIMEN additives</th>
<th>preparative steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>alumina</td>
<td>25</td>
<td>ignition 1100 °C</td>
<td>6</td>
<td>boric acid 3 g</td>
<td>pressing 300 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 hour</td>
<td></td>
<td></td>
<td>2 min</td>
</tr>
<tr>
<td>aluminium hydroxide</td>
<td>25</td>
<td>drying in steps</td>
<td>6</td>
<td>boric acid 3 g</td>
<td>pressing 300 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignition 1100 °C</td>
<td></td>
<td></td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeolite</td>
<td>0.8</td>
<td></td>
<td>6.4 g</td>
<td>Na$_2$B$_4$O$_7$</td>
<td>digestion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na$_2$NO$_3$ 1260 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KI 9 min</td>
<td></td>
</tr>
</tbody>
</table>

It is difficult and time consuming to dissolve bauxite and red mud samples. However they are easily pressed into pellets without the addition of binding agents. The strength and surface characteristics (surface finish) of these pellets are suitable for XRF spectrometry but the mineralogical effect (matrix interference) prevents their use. This is caused by the inhomogeneity of the sample: the specimen consists of grains of different chemical composition and crystallographic structure, which may influence the absorption of the primary beam and the emission of the fluorescent X-rays. Therefore reliable intensity measurement can be expected only from amorphous (fused) specimens of bauxite and red mud. When preparing fused disks as specimens for analytical purpose, the following factors are to be considered:

- the physical characteristics of the sample: grain size, ignition losses
- the type of the fusing agent (e.g. lithium or sodium tetraborate)
- the sample to fusing agent ratio
- temperature and duration of the annealing
- storage of the fused beads.

For the preparation of the fused beads laboratories are equipped with automated instruments.

When analyzing alumina for the minor (contaminating) components, one may regard it as a chemically homogenous powder. Because of the low concentration of the contaminants any unnecessary dilution of the sample is to be avoided. Thus the only acceptable technique for preparing alumina samples is the pellet pressing. Pressed pellets of acceptable mechanical stability can not be
prepared from alumina without the addition of a binding agent. The use of boric acid as a binder results in pellets of appropriate strength.

For preparation of pressed pellets the following factors are of vital importance:

- the physical characteristics of the sample (grain size, crystal structure)
- the type and purity of the binder
- the sample to binder ratio
- pressure and duration of the pellet pressing.

For the analysis of aluminium hydroxides and aluminium hydroxide based products there is a choice of two possibilities:

- pelletized specimens are prepared similarly to the alumina samples and analyzed using a different analytical program
- the samples are ignited to alumina and then analyzed identically.

The second option provides several advantages. First of all, only one analytical procedure is needed. On the other hand, as the water is driven out of the samples, the sensitivity of the analysis improves as the concentration of the contaminants is elevated.

The sample crystallinity was shown to exert the highest impact on the XRF analysis results of alumina and aluminium hydroxide type of materials. The intensity of silicon, titanium, vanadium and calcium fluorescence varied as a function of α-Al_2O_3 contents of the samples. Therefore specimens of unknowns and standards with identical crystallinity are to be prepared using appropriate heat treatment.

No grain-size effect was detected, but the boric acid binder enhances (e.g. P, Si) or reduces (e.g. V, Mg) the intensity of some elements. A constant binder-to-sample ratio is to be adhered accordingly.

Synthetic sodium aluminium silicates, produced at a number of alumina plants, can also be regarded as chemically homogenous powders. However they are analyzed for major components, not for contaminants. Thus dilution of the matrix is not only acceptable but favourable. Bead casting is the best choice for these samples.

3.4.2.2 Methods of concentration determination

If a flat sample with a thickness higher than the critical is presented to a primary beam of X-rays with intensity of I_0, the I_i intensity of the fluorescent K_{α} radiation from the element i is given by the Equation (1):

$$I_i = C_i - I_0 - G_i$$ \hspace{1cm} (1)
where \(C_i \) is the concentration of element \(i \)
\(G_i \) is the 'excitation coefficient'.

The excitation coefficient is a function of the absorption coefficient of the matrix for the exciting and for the fluorescent \((K_{\alpha})\) radiation as well, along with the probability of the \(K_{\alpha} \) generation. This shows that mathematical models based on fundamental parameters (i.e. using calculated \(G_i \) values) are beyond reach for routine analytical work.

As far as the composition of the sample is known, or it contains an internal standard of known concentration, the value of the \(G_i \) or the ratio of the \(G_i \) values can be determined and then the concentrations calculated. However these methods are not widely used for routine analytical purpose.

Typically a series of standard samples of known chemical composition is used for the determination of calibration curves covering the required range. This approach in combination with the high long term stability of the up-to-date instruments ensures appreciable results, but it should rely on reference materials with known composition satisfying the following requirements:

- standard reference samples with appropriate documentation
- round-robin analyzed according to international standards
- display a long term stability
- their chemical composition and physical properties should correspond to that of the samples to be analyzed.

3.4.2.3 Reliability of the results

Reproducibility of the analytical results is characterized by the standard deviation \((\sigma)\). \(\sigma \) is a measure of the statistical fluctuations of the results for a given type of analysis, chemical element and concentration:

\[
\sigma = \sqrt{\frac{\sum(C_i - \bar{C})^2}{n-1}}
\]

where \(M = \) matrix
\(Z = \) atomic number
\(C = \) concentration

The standard deviation is influenced by the concentration as follows:

\[
\sigma = k_1 - C^{k_2}
\]

According to our experience the value of the constant \(k_2 \) can show
fairly high deviation from 0.5, its accepted value. When the effect of the matrix on the standard deviation is to be considered, the average atomic number of the matrix \(Z_M \) can give the clue:

\[
\sigma = \frac{1}{Z_M^2} c^2 \quad Z = \text{const.} \quad \{4\}
\]

The effect of the atomic number on the \(\sigma \) is given by the formula:

\[
\sigma = k_1 \frac{1}{Z} + k_2 \quad M_C = \text{const.} \quad \{5\}
\]

Statistical characteristics and calibrated concentration ranges for the analytes of interest are given in Tables 3.4-2 and 3.4-3.

Table 3.4-2

Characteristics of the XRF-tests for alumina and aluminium hydroxide

<table>
<thead>
<tr>
<th>Calibrated concentration range (%)</th>
<th>Standard deviation of the determinations ((%) ((\pm\ \text{abs.} %))</th>
<th>Deviation from the results from the classical analytical methods ((%) ((\pm\ \text{abs.} %))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ 0.010 - 0.028</td>
<td>0.0015</td>
<td>0.003</td>
</tr>
<tr>
<td>Fe₂O₃ 0.018 - 0.060</td>
<td>0.0008</td>
<td>0.001</td>
</tr>
<tr>
<td>TiO₂ 0.002 - 0.011</td>
<td>0.0007</td>
<td>0.0005</td>
</tr>
<tr>
<td>V₂O₅ 0.002 - 0.012</td>
<td>0.0007</td>
<td>0.001</td>
</tr>
<tr>
<td>P₂O₅ 0.0002 - 0.0008</td>
<td>0.0003</td>
<td>0.0005</td>
</tr>
<tr>
<td>CaO 0.008 - 0.036</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>MgO 0.0025 - 0.0037</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>CuO 0.0008 - 0.0012</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
<tr>
<td>ZnO 0.010 - 0.028</td>
<td>0.0002</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* = at the middle of the concentration range
** = based on comparative series analysis

Table 3.4-3

Characteristics of the XRF-tests for zeolite

<table>
<thead>
<tr>
<th>Calibrated concentration range (%)</th>
<th>Standard deviation of the determinations ((%) ((\pm\ \text{abs.} %))</th>
<th>Deviation from the results from the classical analytical methods ((%) ((\pm\ \text{abs.} %))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ 30-40</td>
<td>0.08</td>
<td>0.3</td>
</tr>
<tr>
<td>Al₂O₃ 18-30</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>
REFERENCES

3.5 MINOR AND TRACE ELEMENT ANALYSIS OF CO- AND BY-
PRODUCTS IN BAYER ALUMINA PRODUCTION BY ATOMIC
ABSORPTION SPECTROMETRY

M. Dorsodi

Atomic Absorption Spectrometry (AAS) as an analytical technique
developed in the last fifties has been introduced in alumina
industry quite rapidly for its relatively low expenses and simple
sample preparation (in some cases solution of sample can be used
directly without any other separation procedure). This technique
can be applied mainly if analytical problems need complicated
procedures, i.e. determination of Mg, Zn, Na.

3.5.1 Working Principle of AAS Units [1, 2]

The AAS technique is based on measuring the "peak absorbance" of
a spectral line by using a spectral light source emitting a sharp
line. The absorption coefficient, the total absorption and the
absorbance quantities are used to relate phenomenon observed in
practical measurement of atomic absorption as relationship
between concentration and energy absorbed.

Absorption coefficient, k_v

The absorption coefficient at a discrete frequency, v, is defined
by the equation:

$$I_v = I_v^0 e^{-k_v L} \quad \{1\}$$

where, I_v^0 and I_v are the initial and final intensities of
radiation of frequency v, passed through an absorption cell of
length L. (A plot of k_v against frequency represents the profile
of the absorption line.)

Total Absorption Factor, A_T

It is defined in terms of the total amount of light passing
through the cell at a particular spectral line. The intensities
used are integrated with respect to the complete absorption line,
and are given by:

$$A_T = \frac{\Delta I}{I_o} \quad \{2\}$$

where $\Delta I = I_o - I$, and I is the amount of radiation leaving the
cell. The term percent absorption used in atomic absorption is defined as \((\Delta I/I_o) \times 100 \).

Absorbance, A

It is defined as:

\[
A = \log_{10} \left(\frac{I_o}{I} \right) \tag{3}
\]

where \(I_o \) and \(I \) are the incident and transmitted intensities at the absorption cell.

The principle of operating an AA spectrophotometer is that hollow cathode lamp is used as resonance line source. The light beam from this source consists of resonance radiation. (The line that represents a transition between the ground state and a higher state is known as resonance line.) This resonance radiation, which is electronically or mechanically pulsed, passes through the atom reservoir (flame or furnace) where they may be absorbed by atomic vapour. Analyte atoms are produced thermally in the atom reservoir. The ground state atoms, which predominate under the experimental conditions, absorb resonance radiation from the lamp, reducing the intensity of the incident beam. A monochromator isolates the desired resonance line and allows to fall on a photomultiplier tube. An electrical current, whose magnitude depends on the light intensity is produced. The electronics of the unit are designed to respond selectively to the pulsed radiation from the radiation source, and measure the amount of light attenuation in the sample cell, and convert these readings to the actual sample concentration.

Since the light source provides the resonance line of a single element, in general, this is not a multielement method. Development of simultaneous multielement AA equipment has been hindered by problem with optical alignment of components, the need for different operating conditions for many elements, and relatively short linear range of calibration curves.

Due to the small number of resonance lines, spectral interference has to be consider only rarely in AAS.

3.5.2 Instrumentation [1, 3, 4]

In every photometer intended for AA, the following instrumental systems may be distinguished.

Emission system

Basically, the system consists of a source. The most common source for AA measurements is the **hollow cathode lamp**, which consists of an tungsten anode and a cylindrical cathode sealed in
a glass tube that is filled with neon or argon at a pressure of 1-5 torr. These lamps can produce resonance radiation of narrow linewidth typically <0.01 Å, the cathode constructed from the metal or an alloy of the element being determined. If the cathode consist of a mixture of several metals such lamp permits the analysis of more than a single element with it (multielement lamp). In routine operation of an AA spectrophotometer the use of multielement lamp is convenient, easy and economical.

For certain elements (As, Se, Te, Sn, Pb) higher intensity of emitted light can be achieved when applying electrodeless discharge lamps. These lamps are constructed by sealing a small amount of the pure metal or pure metal salt of element interest into a silica bulb together with an inert gas at low pressure. This bulb is placed in the cavity of radio frequency coil powered at 27 MHz. The components are than built in a lamp body of size similar to hollow-cathode lamp. The electrodeless discharge lamps provide radiant intensities that are usually one or two orders of magnitude greater than their hollow-cathode counterparts.

Sodium and potassium hollow-cathode lamps are often unsatisfactory. The vapour discharge lamps are available for these elements.

With the modern equipments using modulation of the heating currents of lamp so that intensity fluctuates at constant frequency, a long-life lamp (about 2000 working hours) can be achieved and the interferences caused by emission of radiation from flame can be eliminated.

Absorption system

The main component of this system is the atomic vapour which is to exercise its absorption on the beam of radiation from the source. The absorption system thus comprises all the instruments and accessories that are involved in generating the atomic vapour, starting with the means of introducing the sample; in these parts it is necessary to preserve a constant ratio between the concentration of the analyte in the sample and that of the atomic vapour.

- In the case of photometers that use a flame, the absorption system consists of the flame, the burner that supports it, the sprayer, capillaries, tubes or injection system for introduction of the sample, flowmeters to control the gases, turning mechanisms for rotating the burner, devices for adjusting the height of the burner. Apart from viscosity of the solution to be tested and material quality of component and matrix to be measured the efficiency of atomization additionally depend on the design of atomizer, the rate of atomization, the temperature depending on the chemical composition of the flame and the character of the flow of the flame (construction and shape of the burner head). The atomizing gas burner system is of decisive importance concerning the accuracy of the measurement.
If photometers that do not use a flame than resistance heated graphite tube, heated carbon rod or filament furnace (ETA), flash-heating chamber or electrodes in spark-in-spray techniques generate the atomic vapour.

The ETA and later techniques are generally used for trace analysis.

Further advantage of these is that small amounts of material are required.

The auxiliary optical components, such as lenses for collimating the beam, mirrors for the multi-path devices are also included in the absorption system.

Selection system

This refers only to the equipment for spectral selection. The system includes both the optical devices for spectral selection (filters, monochromators with prism or grating) and mechanical accessories (slits, turning mechanisms, and means for reading wavelength settings and slit widths).

Photometric system

The measurement of light intensity is performed with a photomultiplier. The system includes all the electronic equipment necessary for supplying the photomultiplier, amplification, rectification, direct reading, scale expansion. The photometric system is capable of discriminating between the modulated signal from the source and the continuous signal from the flame.

These devices produce signals I_0 and I proportional to pulse heights of the respective signals. Log amplifiers are used to process the signal which is fed into the differential inputs of an operational amplifier, which performs the required subtraction,

$$A = \log \left(\frac{I_0}{I} \right) = \log I_0 - \log I$$

and a readout in absorbance is obtained.

Modern devices, in general, provided digital or screen display of extinction and in that time enable auto-zero setting and measurement under various integration times. Direct electronic display of concentration and curve correction possibility required from time to time is also ensured.

The AA-instruments generally can also be used in emission mode as flame photometers. The instruments for flame emission work are similar in design to flame absorption instruments except that the flame now acts as radiation source (the hollow-cathode lamp and chopper are therefore unnecessary). For emission flame
photometry, use is made of radiation emitted by a sample introduced into the flame and excited in it. The most important uses of flame photometry have been in the determination of sodium, potassium, and lithium.

There are two basic types of AA spectrophotometers: the single-beam and double-beam.

3.5.3 Sample preparation for AA-measurement [4 - 6]

Samples arrive in analytical laboratory usually either as solids or liquids and the analyst is required to determine the concentration of one element or series of elements. The sampling procedure is usually out of the analyst's control but is very important and if incorrectly carried out it can lead to errors in the final results. That is why it is recommended as far as possible to make sure that the analysed sample is homogenous, uncontaminated and representative of bulk material.

A disadvantage of flame AA-method is the requirement that the sample be introduced into the excitation source in form of solution, most commonly an aqueous one. Unfortunately many materials of interest, such as minerals or i.e. the co-, and by-products in Bayer alumina production are not directly soluble in common solvents, and extensive preliminary treatment is often required to obtain a solution of the analyte in a form ready for atomization.

Indeed the decomposition and solution steps are often more time-consuming and introduce more errors than the AA-measurement itself.

One of the advantages of electrothermal atomization is that some materials can be atomized directly thus avoiding the solution step. For example liquid samples as aluminate liquors can be pipetted directly into the furnace for ashing and atomizing. Moreover some of solid samples (i.e. alumina) can be weighed directly into cup type atomiser or into tantalum boats for introduction into tube type furnaces or can be pipetted into the furnace in suspension form.

Liquid samples are relatively easy to analyse. The aqueous solution can often be analysed without any further treatment provided that the total dissolved solid content does not exceed about 2% w/v.

- If the concentration of the analyte element is too high for accurate measurement then simple dilution with an appropriate solvent to reduce the analyte concentration within the analytical range of instrument is usually sufficient. In certain cases, for example, determination of zinc content of aluminate liquor after aciduating the sample can be directly atomized in the AA-unit.
- If the element of interest is present in a concentration too low for measurement than some kinds of preconcentration may be necessary.

- If the sample matrix interferes in the determination than it may be necessary to separate the analyte from the matrix before the measurement is carried out.

Solid samples will require some form of dissolution procedure prior to measurement. The requirements for dissolution procedure will depend on the type of sample and of elements to be determined. Therefore total dissolution of the sample may not always be necessary, for example in the case of "quick" sodium content determination of red mud.

- In the simplest case for water soluble salts (i.e. aluminium sulphate) distiled water can be used as solvent.

- At the other extreme, fairly drastic techniques must be used such as pressure dissolution or fusion for refractory compounds (alumina, zircon dioxide).

Generally, the simplest possible procedure for that particular sample should be employed.

The following types of dissolution procedures are usable for solid co- and by-product samples:

- Aqueous dissolution: for aluminium sulphate

- Dilute acids (HCl, HNO₃ or H₂SO₄) dissolution: for some kinds of aluminium hydroxide, and vanadium pentoxide

- Mixed acids /conc.acids (HCl+H₂SO₄) dissolution: for gallium and vanadium pentoxide.

- Pressure dissolution:

 = in teflon lined bomb with mixture of hydrochloric and sulphuric acid for alumina

 = in microwave oven a specially designed microwave digestion vessel with a mixture of suitable acids for some kinds of alumina, zeolites,

 = wet ashing (HF and H₂SO₄ mixture) for some kinds of aluminium hydroxide, zeolites, zirconites, mullites

- Fusion dissolution:

 the sample fused with an alkaline carbonate or hydroxide is usually mixed with borate to act as flux. The type of flux depends on basicity of the sample. NaOH or Na₂CO₃+H₃BO₃ or Li₂B₄O₇ can be used for different kinds of alumina, aluminosilicates, zirconiumdioxide and vanadiumpentoxide.
Though fusions are the easiest and the most successful way of achieving dissolution of the sample, the extra salt content introduced by the flux can pose problems. In flame AA it is desirable to keep the salt content below 3% w/v and in furnace AA the salt content is even more critical. If these requirements cannot be met by the fusion process, than it may be necessary to use another dissolution method.

Although in most cases the sample is in solution, all that remains is to make the sample up to an accurate volume with a suitable solvent, yet sometimes further treatment is necessary. These cases are when interferences occur. Interferences can occasion problems in AA analysis especially when graphite furnace is used. Consequently it may be necessary to separate the analyte of interest from the sample matrix.

Available separation techniques can be described as follows

- Coprecipitation of the analyte with collector. The principle of this technique is based on the fact that certain elements precipitate selectively and qualitatively at particular pH. The analyte of interest is precipitated with a suitable collector and they are both filtered and dissolved in acid (i.e. gallium on aluminium-hydroxide from aluminate liquore)

- Use of ion-exchange chromatography. Various anionic and cationic resins are commercially available and are relatively straightforward to use.

- Solvent extraction. The most commonly used solvents are MIBK, and APDC because a wide range of metals can be chelated and extracted with high degree of efficiency.

In most cases the above listed methods can be used both for separation and preconcentration techniques.

In the course of all possible kinds of applied treatments (dissolution, fusion, separation or preconcentration) the samples may be contaminated by the reagents used in respect of analyte. Contamination must be avoided and the acids and all reagents used must be of AnalaR grade. For some trace elements it may be necessary to use Suprapure grade reagents.

3.5.4 Methods of concentration determination. [2, 3, 5]

Measurement

The solution of adequately prepared sample are atomized in the burner head by use of different gas streams depending on the component to be tested. Gas mixtures frequently used for the investigation are

- air / acetylene
The magnitude of the absorption for given concentration in the sample supplied to the instrument depends upon an aggregate of experimental conditions. Various factors greatly affect the magnitude of absorption. The selection of instrumental and operational conditions can, within certain limits, reduce or increase the response obtained. A change in response is produced by variation of any the instrumental or operational conditions (current supply to emitter unit, pressure and flow-rates of the gases feeding the flame, the path of the beam through the flame, sample flow-rate etc.).

Evaluation

In qualitative work a linear relationship is used which, in its simpler form can be expressed as:

$$ A = m \cdot C $$

where A is absorbance, C is amount of the absorbing species in the light path.

The relationship between the absorption indicated by the instrument and the concentration of the analyte element, which produces it, is established in the calibration procedure.

Normal procedure using calibration curve. A calibration curve covering the range of concentrations found in the sample should be prepared. Usually a series of two to five known standard solutions of the element to be determined must be prepared. This method is used in the absence of interferences and under control conditions. Since the working curve changes from day to day, the instrument should be calibrated for each set of samples. It is generally preferable that calibration solution be prepared in a way that they have same relative concentrations of reagents used for dissolution (if any) and similar concentrations of the major components of the solution, because the maximum accuracy can be obtained by matching the matrix of samples and the standards. Viscosity of sample and calibration solutions must be similar so that both types of solution give the same uptake rate.

Standard addition method widely used in AAS. This method is applied only when the calibration curve is linear over the region of interest and background correction is made. This method compensates for physical and chemical interferences of the sample matrix by addition of known quantity of standard to the sample. Absorbance is measured for the sample first and then for the sample with added aliquots of standard. Three or four measurements are sufficient to provide greater accuracy. The main advantage of this method is that matrix matching is achieved automatically. This method should be used for the unknown sample matrix and for samples containing a low concentration of analyte elements in a large amount of varying matrix constituent. In a
usual standard addition method, the first sample aliquot is
diluted to volume, while the second and third ones are spiked
with a standard solution and then diluted to a similar volume.
Samples should be spiked in such a way that the second solution
has a concentration of approximately twice that of the unknown
and the third, three times that of unknown. The absorbance of
each solution is plotted on a calibration curve and the
concentration of the sample is graphically derived by
extrapolation to zero absorbance on the negative X axis.

Internal standardization method

The usual procedure is to add to each of the sample and standard
solutions a known amount of an internal standard element and
measure the absorption signals for both simultaneously. The ratio
of the signal intensities is then measured as a measure of
analyte concentration. This method permits similar compensation
for errors caused by variation in nebuliser and flame
characteristics.

3.5.5 Sensitivity, detection limit and accuracy in AAS [2, 4]

Atomic absorption spectroscopy is a sensitive means for the
quantitative determination of more than 60 metals or metalloid
elements.

Analytical sensitivity

The analytical sensitivity for determination of an element by AAS
with given instrument is defined as the concentration of the
element (mg/dm³) which produced a 1% absorption signal (0.0044
absorbance) under optimum conditions. The analytical sensitivity
depends on absorption path length and nebulisation/atomization
efficiency.

Detection limit

This term is used to define the lowest detectable concentration
of the element in the sample solution and depends on the
instrumental stability. Detection limit may vary from instrument
to instrument and from one type of sample matrix and solvent to
another for the same element. Fluctuation can result due to
source, flame, and detector noise. (The source noise is negligible
in double beam instruments).

For many elements, detection limits for AAS with flame
atomization lie in the range of 1 to 20 ng/cm³ or 0.001 to
0.020 ppm; for electrothermal atomization 0.002 to 0.01 ng/cm³ or
2x10⁻⁶ to 1x10⁻⁵ ppm. In a few cases, detection limits well
outside of these ranges are encountered.
Accuracy

In quantitative measurements there are two types of errors:

1. Random errors, which are indeterminate and caused by uncontrollable variables. A measure of random error is given by precision of a measurement.

2. Systematic errors, which are determinate and attributable to a definite cause. These errors can be constant from sample to sample, proportional to the size of the sample, or may vary in a complex way. The accuracy of measurement is determined by systematic errors.

Under usual conditions, the relative error associated with flame AA is of the order of 1-3%. With special precautions this can be lowered to a few tenth of one percent. In cases of nonflame atomization the accuracy usually exceeds those for flame atomization by factor of 5-10.

References

3.6. ANALYTICAL SPECTROSCOPY

The analytical spectroscopy uses of outgrowths of interaction between the matter and the electromagnetic radiation for the determination of the qualitative and quantitative composition of a sample. Groups of clustering are emission, absorption, reflection and fluorescent spectroscopy. Clustering by the sensors are spectroscopy, spectrography, spectrometry.

An excited atom tends to assume lowest energy level by the radiation of a photon. Photon is a quantified pocket of energy.

Exciting the core shells the emission is in the range of XRF, exciting the valence shells it is in VIS, UV and VUV range. In the optical range the following materials absorb the light below the wavelength given here:

- glass < 310 nm
- air < 180 nm
- silica < 160 nm.

The optical path must be filled with a non absorbing gas or vacuum for working below 190 nm. The different instrument-names e.g. quartz spectrograph or vacuum spectrometer show the optical range.

3.6.1. Excitation

The analyte is in the spectroscopic source like an "atomic vapour", however the samples are in solid, powder, liquid or rarely gas state.

Solid samples can be transported to source and excited by:

- Spark and arc stand
- Laser atomisator
- Conductive solid nebuliser
- Glow discharge lamp
- Electro - Thermal Atomizer
- Special methods for solid or slurry sample intake.

The solutions have to be nebulized, desolvated, atomized and then excited. Nebulisers may be:

- Meinhard concentric (Figure 3.6-1)
- Babington grooved (Figure 3.6-2)
- Ultrasonic
- Thermospray
- High pressure

Figure 3.6-1
Meinhard nebuliser
A special tool for the determination of hydride producing elements is the hydride generator in which case the analytes are in gas state (Figure 3.6-3).
The plasma in arc, spark and ICP torch is for desolvating, atomizing and exciting. ICP torch can be seen in (Figure 3.6-4). The plasmas differ from each other in excitation and ionisation degree due to different temperature, gas and live time.

![ICP torch](image)

Figure 3.6-4
ICP torch

Increasing the degree of ionisation the number of spectral lines becomes greater. The atomic and ionic spectra of a given element are compared to each other and the ion spectra contain more lines than the atomic spectra. The intensity of the former is much less than that of the latter [1].

At a given photon energy, i.e. at a given wavelength, the intensity depends on the number of photons produced during a unit of time. The number of photons is a function of the number of analyte particles present in an unit volume of plasma.

\[I = f(c) \] \hspace{1cm} (i)

The intensity quantifies the concentration. As the relationship is extremely complex to be derived theoretically, in practice it is established empirically with the aid of samples of known composition (Figure 3.6-5). The process is the so called calibration.
Figure 3.6-5
Producing Chemical Information
3.6.2. Dispersion of the light

The light produced by excitation is composed of rays of different wavelength. Mono- and polychromators resolving the light into components are called dispersion devices. The devices are based on three different principles:

- refraction of light (Prisms)
- interference due to light diffraction (Grating)
- absorption of light (Filters)

The angle dispersion of a grating is:

\[m \lambda = b (\sin \alpha + \sin \beta) \] \hspace{1cm} \text{(2)}

where

- \(m \) spectral order
- \(b \) grating constant
- \(\alpha \) incident angle
- \(\beta \) diffraction angle
- \(\lambda \) wavelength

Known the focal length of the optical system the linear dispersion can be calculated. It is an important parameter choosing a spectrometer.

3.6.3. Detection

The spectroscopy means comparing similar (or homologous) line pairs by visual observing.

In a classical spectrography the spectrum is recorded onto a photo-plate or film. It is possible to make qualitative analysis from the recorded spectrum by the help of a wavelength standard spectrum.

Quantitative results can be determined from measured blackening by a micro-photometer. The method uses Standard Reference Materials for the calibration. There is not a linear function between the intensity of a spectrum line and blackening. There are some evaluation methods for the linearization [5].

Spectrometry is the electronic measurement of the intensity of spectrum lines by photoelectron multipliers (Figure 3.6-6) or photo-cells, photo-diodes or other semiconductor materials.
3.6.4. Data acquisition

In quantometers the analog-to-digital conversion, digital signal processing, calculations, recording and handling measured data are controlled by a microprocessor or computer. They carry out automatic quantitative analysis and yield concentrations if it has been calibrated.

3.6.5. Spectrometry in alumina plants

Analytical emission spectrometry is series of high performance methods. The performances of methods are comparable with regard to the analytical task only.

3.6.5.1 Spectrography

The method is used for the determination of main and trace elements of:

- bauxite
- red mud
- alumina
- corundum
- hydrate
- aluminate liquor
- chriolite and AlF₃
- ash of anodic mass
- aluminium
- high purity aluminium
- aluminium alloys
- gallium and high purity gallium
- qualitative analysis of environmental samples
- qualitative analysis of unidentified materials.

The advantage of the technique is the spectrum recorded for ever. The disadvantages are, that the photographic plates have to be stored in proper circumstances, they have to be developed, blackening to be measured and the concentration calculated [1-4].

The spectrographs work with electric arcs and sparks. The electric spark or arc needs conductive materials. The explanation for nonconductive matrixes is the mixing with high purity graphite or using "well-type" electrodes. The suitable exciting mode for a given matrix can be chosen on experimental way or from tables (e.g. see Table 3.6-1). Spectrographic quantitative analysis based on self-made synthetic calibration specimens or Standard Reference Materials.

Table 3.6-1
Excitation modes for different needs [1]

<table>
<thead>
<tr>
<th>Excitation modes</th>
<th>reproducibility limit</th>
<th>duration of discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.c. Arc continuous</td>
<td>10^-1 - 10^-2</td>
<td>10 - 10^2</td>
</tr>
<tr>
<td>a.c. Arc interrupted</td>
<td>10^-3 - 10^-2</td>
<td>10^-1 - 10^-2</td>
</tr>
<tr>
<td>d.c. Arc continuous</td>
<td>10^-3 - 10^-2</td>
<td>10^-3 - 10^-2</td>
</tr>
<tr>
<td>d.c. Arc interrupted</td>
<td>10^-4 - 10^-3</td>
<td>10^-5 - 10^-4</td>
</tr>
<tr>
<td>spark low volt high selfinduction</td>
<td>10^-6 - 10^-5</td>
<td>10^-7 - 10^-6</td>
</tr>
<tr>
<td>spark low voltage L = 0</td>
<td>10^-5 - 10^-4</td>
<td>10^-6 - 10^-5</td>
</tr>
<tr>
<td>spark medium volt.high selfinduct</td>
<td>10^-5 - 10^-4</td>
<td>10^-6 - 10^-5</td>
</tr>
<tr>
<td>spark medium voltage L = 0</td>
<td>10^-5 - 10^-4</td>
<td>10^-6 - 10^-5</td>
</tr>
<tr>
<td>spark high.volt.big selfinduct</td>
<td>10^-5 - 10^-4</td>
<td>10^-6 - 10^-5</td>
</tr>
<tr>
<td>spark high.volt.</td>
<td>10^-5 - 10^-4</td>
<td>10^-6 - 10^-5</td>
</tr>
</tbody>
</table>

For the recording of spectra three-grade filters can usually be used, because of the sensitivity of photoplates. The composition, the temperature and the duration of the development, together with the type of the photo-plates should be constant.

The evaluation of the plates can be divided into three phases: measuring of blackening, calibration of emulsion, determination of concentrations.

3.6.5.2. Optical Emission Spectrometry

The OES method involves burning a small quantity of a sample using electric spark and measuring the intensity of the light produced at specific wavelength. In order to obtain this analysis
the spectrometer has to be first calibrated by burning standards. The spectrometers build for certain job or jobs. Generally one or a couple of limited excitation modes are built in a spectrometer.

Spectrometers are used for analysis of various metals and ores similar to spectrographs. Analysis of ores oscillatory type spark is needed with graphite electrode [6]. A simplified block diagram of a spectrometer can be seen in Figure 3.6–7.

3.6.5.3. ICP optical emission spectrometry

Inductively coupled plasma spectrometers are used mainly for analysing solution samples. Different nebulisers are used with forced or self fed in a spray chamber with an impact bed to separate the bigger particles from the sample spray. The inner (or sample) gas purge the vapour to the centre of the torch where the argon plasma is on. The emitted light can be treated in similar way like spark spectrometry. Due to continuous sample inlet line-intensities can be measured by simultaneous or sequential spectrometers.
The ICP instruments can be used properly for analysis of:
- Bauxite
- Alumina
- Alumina hydrate
- Aluminium sulphate
- Aluminium
- Aluminium alloys
- High purity gallium
- Other samples

Analysis of bauxite and high purity metals are developing. Arsenic in aluminium sulphate is determined by a method of hydride generation. Important step before the hydride generation is the reduction of ions existing in III and V valence state as well. For the determination of trace elements in high purity Ga an enrichment technique was developed on Hyphan-cellulose ion exchanger. Analysing of traces in water can be analysed by the aid of a ultrasonic nebuliser.

For the analysis of an unknown or new material an appropriate method and spectral line have to be selected first. The chosen line must be checked to avoid coincidences and other disturbing processes.

3.6.6. Disturbing interferences

Spectral coincidence is a source of analytical error. Judicious choice of interference-free lines and the application of interference correction techniques ensure the accurate, precise and rapid elemental analysis in a broad range of sample matrixes. Types of interferences other than the simple overlap are also important but they are not covered in the existing tables. A type of spectral interference (e.g. Al) leads to systematic biases of analyte line intensities unless corrective strategies are applied. In this case computer aided - or other - background correction is suggested, however in other cases not only the bias level is moved but the peak is suppressed. In this case an interelement correction ensures the proper result. Complex interelement correction algorithms can identify and evaluate two or more peaks.

A further overlap is the interference with higher spectral order.

\[P \ 178.287 \times 3 = 534.861 \text{nm} \]
\[Mo \ 267.43 \times 2 = 534.86 \text{ nm} \]

The wavelengths of the two lines differ from each other, but the positions are the same. Order filters can be used for separation. The absorbance of a particular filter is a value, not endless, so the filters may be practically good or not.

High concentration of an analyte in the outer part of the plasma decreases the radiation coming from the centre. Due to the self-
absorption the peak is collapsed on its top, the intensity of the line is not proportional to the concentration.

Brightening reflexes cause stray or unwanted lights in the optical chamber and light path.

Stabilized power supply and internal standard helps for the simultaneous measurement to compensate the generator output fluctuation.

Valuable alkaline concentration or high radio frequency power causes changes in signal of analyte by ionisation effects.

The sequence of the samples need any intermission for flushing after a sample with high concentration to prevent the memory effect.

The differences among density and viscosity of samples and calibration standards cause disturbances in sample intakes. Standard addition, internal standard and precise simulation of samples are the best suited to resolve the problem.

3.6.7. Calibration

Calibration without any correction

In ICP technique linear response range is said to be about thousand times of its background. According to the opinion of other authors it is linear through six order of concentration.

Calibration with background correction

To define the sharp position of the background a part of the spectrum have to be scanned. In different spectral order the distances differ between the peak and the background measurement position.

Calibration with internal standard

Synthetic solutions, matrix element or additives are to be used for normalisation since Standard Reference Materials are expensive. The signal of analytes are compared with the signal of internal standard. It is added in the same concentration to every sample and synthetic standard. (Tables 3.6-2 and 3.6-3). Changing plasma parameters due to burning causes the same reaction on the line of analyte and on the nearest line of internal standard. It is valid in case of solid bauxite and the nebulized bauxite solution as well. We add the same amount of Co to the bauxite samples as well to calibration standards. Determining trace elements in alumina or high purity aluminium the internal standard is the matrix.
Table 3.6-2
The pair of spectral lines for analysing of bauxite

<table>
<thead>
<tr>
<th>Component</th>
<th>Line pair</th>
<th>Range of the concentration [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>Al 309.27 / Co 307.23</td>
<td>0.5 - 30</td>
</tr>
<tr>
<td></td>
<td>Al 266.03 / Co 253.22</td>
<td>30 - 60</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Si 251.61 / Co 253.22</td>
<td>0.5 - 90</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Fe 259.94 / Co 263.22</td>
<td>0.1 - 40</td>
</tr>
<tr>
<td></td>
<td>Fe 275.57 / Co 263.22</td>
<td>0.5 - 50</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Ti 308.80 / Co 307.23</td>
<td>0.05 - 5</td>
</tr>
<tr>
<td>CaO</td>
<td>Ca 317.93 / Co 307.23</td>
<td>0.1 - 5</td>
</tr>
<tr>
<td></td>
<td>Ca 315.89 / Co 307.23</td>
<td>5 - 50</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg 279.08 / Co 263.22</td>
<td>0.05 - 25</td>
</tr>
<tr>
<td>MnO</td>
<td>Mn 293.31 / Co 263.22</td>
<td>0.1 - 10</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zn 334.56 / Co 307.23</td>
<td>1 - 25</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>V 310.23 / Co 263.22</td>
<td>0.1 - 5</td>
</tr>
<tr>
<td>CuO</td>
<td>Cu 327.40 / Co 307.23</td>
<td>0.01 - 0.5</td>
</tr>
</tbody>
</table>

Table 3.6-3
The pair of spectral lines for analysing of alumina

<table>
<thead>
<tr>
<th>Component</th>
<th>Line pair</th>
<th>Range of the concentration [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>Si 251.61 / Al 266.93</td>
<td>0.005 - 0.1</td>
</tr>
<tr>
<td></td>
<td>Si 288.16 / Al 306.43</td>
<td>0.003 - 0.1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Fe 259.84 / Al 266.93</td>
<td>0.005 - 0.1</td>
</tr>
<tr>
<td></td>
<td>Fe 275.57 / Al 306.43</td>
<td>0.005 - 0.1</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>V 318.40 / Al 306.43</td>
<td>0.001 - 0.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Ti 334.90 / Al 306.43</td>
<td>0.001 - 0.1</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zn 334.50 / Al 306.43</td>
<td>0.10 - 0.5</td>
</tr>
<tr>
<td>CuO</td>
<td>Cu 324.75 / Al 306.43</td>
<td>0.001 - 0.05</td>
</tr>
</tbody>
</table>

Standard addition
In unknown matrix with measurable blank or background correction standard(s) is/are added to the sample.

3.6.8. Statistics for analytical spectrometry
Guiding principle is that no quantitative results are of any value unless they are accompanied by some estimates of the errors in them.
Least square method is a frequently used method for evaluate of the calibration curve. The shape of calibration curve, the number of calibration points and the confidence level of "fixed" values
have to be carefully checked time by time. The calibration of an instrument needs primary **Standard Reference Materials**. To correct the calibration curve parameters we use well known quasi homogeneous type standards.

References

3.7 SURFACE ANALYSIS AND MORPHOLOGICAL STUDIES OF SPECIAL PRODUCTS
Á. CSANÁDY, A. CSORDÁS TÓTH

3.7.1 Surface analysis of special products

Progress in development of new materials and their technology depends mainly on the scientific knowledge of property-composition relationships, which is based on a detailed characterization on a microscopical scale. Many important material properties are governed by local variations of the chemical composition.

The experimental effort in studying solid-gas and solid-solid interface is more and more extensive also in case of materials used for practical applications. Understanding of nucleation and condensation, catalysis, adhesion, surface diffusion, sintering, corrosion etc. will all be enhanced by the determination of the chemical composition of the interfaces. A realistic view of the boundary at a solid surface is not the obvious ideal infinite plane. On atomic scale, the boundary includes crystal faces having composition, extent, and orientation that are fixed by the pretreatment of the solid. In an applied sense, almost everything that is interesting seems to happen on a surface or requires a surface reaction. The most common compositional analysis methods are summarized in Table 3.7-1.

EELS, FIM-AP and ISS techniques are less convenient and versatile than others therefore they are not discussed in details as it is shown in Figure 3.7-1.
Table 3.7-1
Survey of the most distributed compositional analysis methods based on physical phenomena

(Only methods for which commercial apparatus is on the market are listed)

<table>
<thead>
<tr>
<th>Excitation</th>
<th>ions</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray</td>
<td>electron</td>
<td></td>
</tr>
<tr>
<td>fluorescence</td>
<td>micro-probe</td>
<td></td>
</tr>
<tr>
<td>analysis (XRF)</td>
<td>analysis</td>
<td>(EPMA: WDX, EDX)</td>
</tr>
</tbody>
</table>

Electron Auger electron
spectroscopy copy
for (AES)
chemical analysis (Electron-loss
or soft spectroscopy
X-ray (ESCA)
photomicroscopy (EELS))

Ion micro-ion
probe mass
or secondary ion spectroscopy
mass microscopy and
spectroscopy (SIMS)
(Ion scattering
spectroscopy (ISS))
3.7.2 Electron beam excited analytical methods

The characteristic information used for chemical analysis is a consequence of the interaction of the incident electrons with atomic levels in the target e.g. in the sample as schematized in Figure 3.7-2.

The two methods (EPMA and AES) are complementary for several reasons. Their relative probability is governed by yield factors w_X and w_A which sum to 1 for a given primary hole. X-ray analysis is generally recognized for characteristic energies ≥ 1 keV while Auger analysis is more efficient for lower energies.
3.7.2.1 EPMA

Electron microprobe analysis (EPMA: WDX, EDX) is the most widely distributed analytical technique [2] based on the electron beam excitation of the material in an electron microscope, i.e. in a vacuum system.

Energy of the X-ray photons is characteristic of the elements emitting them. As they come from a few µm thick layer of the surface to get information of thinner layers, special preparation and investigation techniques have to be used (e.g. slantwise polished samples or surfaces inclined by sputtering). There is a good possibility to follow the Na contamination of Al₂O₃ products originating from the Bayer process by WDX.

The X-ray photons can offer elemental distribution of an element of interest, line profile analysis and point analysis can be performed by detecting these photons by wavelength dispersive spectrometers which apply crystal spectrometers. This method is called wavelength dispersive microanalysis (WDX). Energy dispersive microanalysers make use of solid state detectors (EDA/X). The main differences between the two techniques are shown in Table 3.7-2.

Figure 3.7-2
The interaction of the incident electrons with atomic level
Table 3.7-2
Comparison between WDX and EDA techniques

<table>
<thead>
<tr>
<th>Detection limit</th>
<th>WDX</th>
<th>EDA(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of detected elements</td>
<td>B-U</td>
<td>Na-U</td>
</tr>
<tr>
<td>Detection limit (at%)</td>
<td>0.01-0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Energy resolution (eV)</td>
<td>10-20</td>
<td>146</td>
</tr>
<tr>
<td>Type of data collection</td>
<td>sequential</td>
<td>simultaneous</td>
</tr>
<tr>
<td>Time requirement of analysis</td>
<td>fairly long</td>
<td>short</td>
</tr>
</tbody>
</table>

The data are only valid in case of the instruments used in ALUTERV-FKI Ltd. i.e. they depend on the type of the instruments to be used.

3.7.2.2 AES

One of the most versatile and convenient techniques for microlocal elemental analysis is AES, particularly in its more recently developed instrumental configurations, high resolution scanning Auger electron spectroscopy (SAES) or scanning Auger microscopy (SAM).

It is used to observe: segregation, diffusion, contamination, adsorption, oxidation, etc. i.e. sintering, adhesion, catalysis, corrosion, etc. processes.

Auger electron emission occurs when an inner shell of an atom is ionized e.g. by electron impact excitation in AES, that is followed by a radiation less Auger transition and the escape of the Auger electron into the vacuum. The kinetic energy of an Auger electron E_{WXY} for an ionized level of binding energy E_w and the interacting outer levels with energies E_x and E_y is given by:

$$E_{\text{WXY}} = E_w (Z) - E_x (Z') - E_y (Z') - \phi_A$$ \hspace{0.25cm} (1)

where $Z' = Z + \frac{1}{2}$, and ϕ_A is the analyzer work function. The Auger electron energy is independent of the primary electron energy E_p if $E_p > E_w$ and a unique function of the atomic number Z for a given transition (Figure 3.7-3). Thus a qualitative analysis becomes possible in comparison with "fingerprint" spectra which are compiled in reference books. All elements can be detected with the exception of H and He (and atomic Li) because of three electrons participate. A suitable choice of transitions (KLL, LMM, etc.) provides an elemental detection in the energy range 20 - 2500 eV with an optimum sensitivity of about 0.1 to 0.5 at%. The electron escape depth is about 0.5 to 3 nm in this range and is the cause of the surface sensitivity of AES.
Chemical bonding results in a change of the binding energies involved. Generally large effects occur for transitions from valence bonds. For example the energy shift of the LVV transition is -15 eV in Al_2O_3 with respect to Al. The secondary emission spectrum contains additional features which can be used for analytical information.

By ion etching (sputtering) in depth profiles can be achieved. An example of depth - composition profile analysis of a thin film metallization system is shown in Figure 3.7-4. This particular composite is made up of three separate metallic layers bonded to alumina (Thin layers of chromium and titanium are typically used to promote gold adherence to ceramic surfaces).
3.7.3 X-ray excited method: Photoelectron Spectroscopy (XPS)

There is another acronym ESCA which describes the same technique "X-ray Photoelectron Spectroscopy" or "Electron Spectroscopy for Chemical Analysis" which can be similarly used.

The basic ESCA experiment is shown schematically in Figure 3.7-5 for a free atom in the gas phase. X-ray photons, hv, from a nearly monoenergetic beam are directed onto the sample. The photons are absorbed by sample atoms with each absorption event resulting in prompt emission of an electron. Electrons from all the orbitals of the atom with a binding energy, E_b, less than the X-ray energy are excited, but not with equal probability. Thus some peaks are more intense in the spectra than others. Since energy is conserved, the kinetic energy, KE, of the electron plus the energy required to remove it from its orbital to the spectrometer vacuum must equal the X-ray energy. If the X-ray energy is known and the kinetic energy is measured with the electron spectrometer, the binding energy of the electron in the atomic orbital can be obtained. In practical solid state experiments, a correction for the spectrometer work function, ϕ_g, must also be applied, normally as a part of the spectrometer procedure. Thus one obtains

$$E_b = h\nu - KE + \phi_g$$

The intensity of the signal observed is a function of the amount of material present. Thus observation of signal intensities in ESCA spectra can provide semi-quantitative and qualitative analysis of surface material. In addition to the concentration of the element producing the signal, ESCA intensities depend upon the MFP (mean free path) of the electrons and the efficiency of absorption of the exciting X-rays at the sample material.

The bulk of the published ESCA research has been directed toward understanding the systematic shift in peak positions resulting from changes in the chemical structure and oxidation state of chemical compounds. A chemical shift to higher binding energy will be observed for most metals when oxidized. The shift is frequently of the order of 1 eV. Line energies of great many aluminium and silicon compounds were measured with a high accuracy by utilizing the possibility that in the conventional ESCA instruments also the KLL Auger lines could be generated. Arranging the photoelectron and Auger energies on a two dimensional "chemical state plot" permits more accurate delineation of the characteristics of a chemical state. Some results shown in [4] are given in Table 3.7-3.
Table 3.7-3
Line energies of aluminium compounds. Photoelectron binding energies, Auger kinetic energies, and Auger parameters (Auger kinetic energy + photoelectron binding energy)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Al 2p</th>
<th>Al KLL</th>
<th>Al α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>72.72</td>
<td>1393.41</td>
<td>1466.13</td>
</tr>
<tr>
<td>AlN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3 sapphire</td>
<td>73.8</td>
<td>1389.1</td>
<td>1462.9</td>
</tr>
<tr>
<td>Al2O3 sapphire, heated 450 °C</td>
<td>74.12</td>
<td>13.7888</td>
<td>1462.00</td>
</tr>
<tr>
<td>α-Al2O3</td>
<td>73.65</td>
<td>1388.44</td>
<td>1462.09</td>
</tr>
<tr>
<td>α-Al2O3</td>
<td>73.52</td>
<td>1388.03</td>
<td>1461.55</td>
</tr>
<tr>
<td>Al2O3, with elect. on flooding</td>
<td>73.95</td>
<td>1387.68</td>
<td>1461.63</td>
</tr>
<tr>
<td>Al2O3 (boehmite)</td>
<td>74.21</td>
<td>1387.47</td>
<td>1461.68</td>
</tr>
<tr>
<td>Al(OH)3 (gibbsite)</td>
<td>74.02</td>
<td>1387.80</td>
<td>1461.82</td>
</tr>
<tr>
<td>Al(OH)3 (bayerite)</td>
<td>73.80</td>
<td>1387.63</td>
<td>1461.43</td>
</tr>
<tr>
<td></td>
<td>74.19</td>
<td>1389.55</td>
<td>1462.04</td>
</tr>
</tbody>
</table>

The most important processes of XPS are shown in Figure 3.7-6. This method was often used to investigate the mechanism of adsorption of silicates and phosphates on the surface of synthetic gibbsite. The results have shown the importance of the presence of Ca in the adsorption process. Atomic concentration ratio estimates calculated from peak intensities, kinetic energies, and photoelectron cross-sections, showed that Ca/Si exceeds Ca/P on the alumina surface [5].

XPS could show the differences in organic surface contaminates adsorbed at alumina surface causing differences in its colour [6].

XPS was successfully used to investigate the nature of the surface adsorption of HF on alumina [7, 8]. XPS is particularly well suited to the study of the gas adsorption process. It was stated that when moisture was present (conventional conditions) no AlF3 formation was observed, the absorption of HF involves a weak interaction, probably hydrogen bonding with intermediate layers of water. The measurements was based partly on the comparison with the data of pure compounds being in question (see Table 3.7-4).
Figure 3.7-6
The most prominent process going on in XPS

Table 3.7-4
Binding Energies of Aluminium, Oxygen, Sodium and Fluorine [8]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al_{2p}</th>
<th>O_{1z}</th>
<th>Na_{A}⁺</th>
<th>F_{A}⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_{2}O_{3}</td>
<td>74.3</td>
<td>531.5</td>
<td>2062.4</td>
<td>1340.5</td>
</tr>
<tr>
<td>AlF_{3}</td>
<td>77.0</td>
<td>533.0</td>
<td>-</td>
<td>1339.9</td>
</tr>
<tr>
<td>Na_{3}AlF_{6}</td>
<td>76.0</td>
<td>531.8</td>
<td>2060.3</td>
<td>1339.7</td>
</tr>
<tr>
<td>NaF</td>
<td>-</td>
<td>-</td>
<td>2061.0</td>
<td>1339.8</td>
</tr>
</tbody>
</table>

3.7.4 Ion beam induced method: Secondary Ion Mass Spectrometry (SIMS)

The interaction of energetic ions with a solid results in the ejection of substrate atoms and molecules in both neutral and charged states. This moderately efficient production of charged particles (secondary ions) coupled with high sensitivity mass spectrometric techniques forms the basis of the SIMS method. The popularity of SIMS as a surface analysis tool can be attributed to its ability to detect and analyze the full range of elements and isotopes, from hydrogen to uranium, in the ppm and ppb atomic range. In practice, SIMS uses focused ion beams to erode atoms from a selected sample surface, resulting in the emission of positive and negative secondary ions which are subsequently mass...
analyzed. The resulting spectrum is used to measure trace elements or analyze any elements as a function of depth.

There are three modes of SIMS: Dynamic, Static and Imaging. In dynamic SIMS, an ion beam with high primary current sputters material from the sample, surface, thereby permitting the measurement of elemental concentration changes relative to depth (i.e., depth profiling). Static SIMS uses an ion beam with extremely low beam current in order to maintain the chemical integrity of the material. Analogous to Scanning Electron Microscopy (SEM), Imaging SIMS IMMA records a chemical image of a sample by detecting secondary ions as a function of x-y position on the sample. This results in element-specific images or maps.

Acquiring SIMS data from insulators (e.g., oxides) can be complicated by sample charging. By electron bombardment the positive charge build-up on the sample surface when analyzing can be compensated. By this way positive and negative secondary ions are detected with equal ease and without the need for deposited conductive coating (PHI 6600 Dynamic SIMS). SIMS provides information from the uppermost surface layer (0.3 - 1 mm), the limit of detection is about 0.1 ppm and in good instruments the lateral resolution may be 0.1 - 1 µm.

3.7.5 Study of the morphological features of special products

The various microscopic techniques (see Chapter 3.1) are very useful tools to study the morphological features like size, shape, surface roughness, homogeneity, state of aggregation and/or sintering of different powder materials. Here below, the application possibilities of these techniques will be discussed by means of some examples.

3.7.5.1 Study of the morphological features of ground aluminium trihydroxide

The morphology of the aluminium trihydroxide (ATH) of technical grade is well known, several publications [9-14] were dealing with the crystallization and agglomeration processes of ATH. ATH has a polycrystalline nature; aggregates and agglomerates consisting of individual crystallites of gibbsite with pseudo-hexagonal structure are characteristic to this material. The size of individual crystallites may vary from about 1 µm up to several tens of µm. Typical polycrystals of ATH can be seen in Figure 3.7-7a, while Figures 3.7-7b - d are showing the morphology of some ground products made in ALUTERV - FKI Ltd. These figures demonstrate the effect of grinding on the shape of ATH. Flaky crystallites, sharp edges can frequently be seen in case of normal grinding process. For applications as filler in various resins besides the size the width of the grain size distribution curve is of primary importance. Secondary electron images (SEI)
with small or medium magnifications show the degree of homogeneity of the size distribution of ATH grains.

Figure 3.7-7
Scanning electron micrographs of: a) normal ATH produced by Bayer process; b - d): ground aluminium trihydroxides made by ALUTERV - FKI Ltd.

In case of special grinding process ATH crystallites with spherical forms and rounded edges can be produced, so we can
follow the grinding process by studying the size and shape of ATH crystals.

3.7.5.2 Studying of the transition process of ATH by the effect of heat treatment

Transition aluminas are important materials for a lot of applications like catalysts, ceramics etc. Scanning and transmission electron microscopies can give us valuable information on the fine structure of these powders. It was found by Lippens [15] and Wefers [16] that sponge-like structure develops within a coherent solid while the skeleton of the crystallites remain unchanged. High resolution electron microscopy can reveal the pore structure of various transition aluminas and that of the corundum, too. Figures 3.7-8a and b show the pore structures in particles of chi and eta aluminas. Parallel pores located in the cleavage plane (001) separate the solid into lamellae with 2-3 nm thickness, which is about twice the average pore width. A network of irregularly shaped slits, about 1 nm wide, extends perpendicularly to, and is connected with, the pores parallel to (001). The intersecting pore systems divide the lamellae into interconnected, irregularly shaped domains of solid. The longest dimension of these domains is about 10 nm, equivalent to the length of about 10-15 AlO₆ octahedra. It is obvious from the electron micrographs that the surfaces of the domains are "rough" on an atomic scale and do not represent refined crystal faces. At temperatures exceeding approximately 1000K, reordering is no longer confined to short-range consolidation within the layer skeleton of the decomposed ATH. The layer structure of the precursor is still obvious, lamellae with 20-40 nm have formed. These phenomena occur simultaneously with the formation of kappa alumina (see Figure 3.7-8c). They are embedded in a network consisting of interconnected crystallites and pores, each has a size of 10-30 nm, equivalent to a surface area of 30-50 m²/g. This estimation is in good agreement with BET surface areas determined for this transition alumina. This type of morphological pattern persists beyond the formation of α-Al₂O₃ at temperatures above 1450K. Lamellae continue to increase in thickness by fusion (see Figure 3.7-8d). The gaps between lamellae also grow with increasing densification, because the habit and parallel texture of the original ATH crystal are retained.
Figure 3.7-8
High resolution electron micrographs of chi (a), eta (b), kappa (c) and alpha (d) aluminas (see Ref. 8)
3.7.6 Studying the size and state of aggregation in case of fine-sized powder materials

Scanning and transmission electron microscopies are routine techniques to study the size and shape of the crystallites of fine sized ceramic materials. In Figures 3.7-9a - d typical SE images of special aluminas made by different technologies can be seen. Figure 3.7-9a shows a super-ground alumina with about 0.5 µm average size, sharp edges and some irregular forms are the "marks" of the grinding process. Figure 3.7-9b shows particles which are very different in shape and also in phase composition (this powder has a significant amount of kappa alumina) from that of the Figure 3.7-9a. Angular crystallites with a few tenth of µm are characteristic to this kappa alumina. Both materials are products of Alcoa Aluminium Corporation. Figure 3.7-9c shows rounded particles (average crystallite size is about 0.1 µm) of a high purity alumina for ceramic applications calcined from a complex aluminium salt (manufactured by Baikowski Chimie). The specific surface area of this powder is about 15 m²/g. Figure 3.7-9d represent also a high purity alumina produced by Showa Aluminium Industry. Worm-like shapes can be seen which are typical for a lot of ceramic powders.

Transmission electron microscopy is a useful technique to reveal the surface structure and the state of aggregation in case of ceramic powders [17-18]. Transmission electron micrographs made by a conventional TEM can show us how the grains of a ceramic powder are building up, whether they are consisting of well-developed facets with sharp edges or they are formed by agglomeration of roughly spherical particles. Differences in the specific surface area measured by BET can be understood by taking TEM images from such materials. Also high resolution electron micrographs of zirconia can reveal the surface structure on an atomic scale. The fine structure and the pore structure of a ceramic material made by sintering can be studied by TEM using ion-thinned preparates.
Figure 3.7-9

Scanning electron micrographs of aluminas of ceramic grade
a.) Super ground product of Alcoa
b.) Super ground, high purity product of Alcoa
c.) Fine sized, high purity alumina produced by Baikowski Chimie
d.) Fine sized, high purity alumina manufactured by Showa Aluminium
3.7.7 Quantitative microstructural studies of ceramic materials

By means of image analytical possibilities of the modern SEM-s quantitative data on the size and shape of pores and crystallites of ceramic materials can be given. It is possible to take backscattered electron images of well prepared (carefully ground and polished) surface of sintered ceramic samples detecting the pores as areas with black contrast. Also the microstructure, the boundaries of individual crystallites building up the sintered ceramic material can be revealed by chemical or thermal etching of the surfaces. The International Standard ISO DIS 6744 [19] refers to the determination of the average grain size of metals (ASTM E 112, [10]). It says that the surface of the ceramic probes must be carefully polished, then thermally etched in the following way:

- etching temperature: 1450 - 1500 °C,
- etching time: 2 - 4 hours.

As average diameter of a grain is usually the equivalent circular diameter taken i.e. the diameter of a circle having the same area as the grain has. In Figure 3.7-10 SE micrographs of two fine sized alumina powders are presented together with typical BE images showing the fine microstructure of the ceramic materials produced by sintering of both powders at 1750 °C. It can be seen that the size of the grains in both sintered product are mostly below or equal to 3 µm (see Figure 3.7-10e). To characterize the shape of the grains the ratio of the maximum and minimum Feret diameters was chosen [21, 22]. It is obvious from the histogram of Figure 3.7-10f. that there is a slight difference between the two ceramics: the shape of the grains made of the Reynolds powder is more rounded than that of the one produced from the Alcoa product.
Figure 3.7-10

Scanning electron micrographs showing fine sized aluminas a.) and b.) starting powders, c.) and d.) the microstructure of the ceramic products made of them by sintering.
Taking into account that the initial particles of the ceramic powders are very often worm-like, J. Besson and M. Abouaf [23] defined a so called geodesic diameter \(D_g \) to characterize the particle shape:
\[F_g = \frac{\pi D_g^2}{4s} \]

where \(s \) is the area of the particle, \(F_g \) is a shape factor equal to one for a circle. The geodesic diameter is defined as:

\[D_g = \max/\min_{A,B \in P} d^*(A,B), \]

where \(d^*(A,B) \) denotes the distance between the two points \(A \) and \(B \) along a path included in the particle, represented by the set \(P \). An illustration of the concept of geodesic diameter is given in Figure 3.7-11, while variations of the mean shape factor during sintering are shown in Figure 3.7-12 [23]. The data of the Figure 3.7-11 can be explained as follows: initial particles have worm-like shape; they become rounded during densification. For sufficient annealing times, grain growth along specific crystallographic directions can occur resulting in more elongated grains. For characterization of the grain size distribution of ceramic materials the so called median \(D_{50} \) value is useful: the grain size for which 50% of the grains are smaller than this value in \(\mu m \) (see Figure 3.7-8 in [23]. Similarly, \(D_{10} \) and \(D_{90} \) can be defined: \(D_{10} \) can represent the size of the smaller fraction of the grains and \(D_{90} \) the coarser fraction. It was found by C. Brodhag et al [24], that for normal grain growth during sintering the whole microstructure increases similarly, i.e. \(D_{10}/D_{50} \) and \(D_{90}/D_{50} \) are almost constant for one type of product.
In case of multiphase ceramics like zirconia-toughened alumina the average grain size of both zirconia and alumina can be determined. Besides the state of agglomeration can be established by using a topological function, where an inspection distance is defined; if the distance between two particles is less than this inspection distance they are considered to be agglomerated. The size of the agglomerates and the number of particles per agglomerate increase as the inspection distance increases. The so called topological function is the ratio of the agglomerate size to the inspection distance. At the final maximum all particles are considered to be agglomerated. If the maximum occurs before this, it shows the occurrence of agglomeration, i.e. poor quality of the dispersion. By means of topological function taken for ceramic materials made of various types of starting powders information can be gained on the microstructure of such ceramic materials. Also it has to be mentioned that the other types of grain size measuring methods can not be applied for sintered ceramic materials only microscopic and image analytical techniques are available.
References

3.8 SURFACE AREA, PORE- AND GRAIN-SIZE OF BAYER ALUMINA CO-
AND BY-PRODUCTS

A. Imre, J. Fekete

The measurement of the special nature of the new products made new classification methods imperative. Three of these new methods are written in the next three paragraphs. These are:

- surface area,
- pore-size distribution and
- grain-size distribution.

3.8.1 Specific surface area

The specific surface area is the size of the surface of a solid powder by unit weight or unit volume. Its value can differ by orders of magnitude, in case of porous and nonporous materials, respectively.

In case of nonporous powders the specific surface area is the sum of the "external" surface area of the grains, whereas in case of porous materials it is given by the sum of the grains "external" and the pores "internal" surface area. Comparing the two, the internal surface area by the material which have greater grains than 10 µm, is greater by orders of magnitude and consequently, the external surface area is almost negligible. As a consequence of the above mentioned the specific surface area \(S_m \) of the porous materials is a function of the pores' size:

\[
S_m = \int_{r_0}^{r} f/r \cdot dr
\]

{1}

where: \(r \) = radius of the pore,
\(r_0 \) = lower limit of the radius of the pore.

Methods for determining the specific surface area of the dust particles are enlisted in Table 3.8-1.

As it can be seen in the Table 3.8-1 the measuring methods can be classified into three main groups. Owing to their accuracy, realiability, easy automation possibility and relatively simple techniques, the measuring methods of the first group are the extensively used ones. ALUTERV-FKI, too, performs the specific surface area measurements by gas-adsorption methods recognized as
international standards [25, 53, 54], therefore, and because of their significance and widespread usage, they will be discussed in details. The study will be started by the discussion of the theory.

Table 3.8-1
Methods for the determination of the specific surface area

<table>
<thead>
<tr>
<th>Methods</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gas (vapour) adsorption methods</td>
<td></td>
</tr>
<tr>
<td>a./ on the basis of weight</td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>dynamic</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>b./ volumetric</td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>8, 9, 10, 11</td>
</tr>
<tr>
<td>dynamic</td>
<td>12, 13, 14, 15</td>
</tr>
<tr>
<td>2. Solution adsorption methods</td>
<td></td>
</tr>
<tr>
<td>a./ fluid adsorption</td>
<td>16, 17, 18, 19</td>
</tr>
<tr>
<td>b./ paint adsorption</td>
<td>20, 21, 22, 23</td>
</tr>
<tr>
<td>c./ radioactive indication</td>
<td>24, 25, 26, 27, 77</td>
</tr>
<tr>
<td>3. Different physical methods</td>
<td></td>
</tr>
<tr>
<td>a./ emanation method</td>
<td>28, 29, 30</td>
</tr>
<tr>
<td>b./ porosimetry</td>
<td>2, 31, 32</td>
</tr>
<tr>
<td>c./ X-ray diffusion</td>
<td>33, 34, 35, 36</td>
</tr>
<tr>
<td>d./ gas permeability</td>
<td>37, 38, 39, 40</td>
</tr>
<tr>
<td>e./ microcalorimetry</td>
<td>41, 42, 43, 44, 78</td>
</tr>
<tr>
<td>f./ capillary condensation</td>
<td>45, 46, 47, 48</td>
</tr>
<tr>
<td>g./ electric potential</td>
<td>25, 49, 50, 51</td>
</tr>
<tr>
<td>h./ conductivity</td>
<td>25, 52</td>
</tr>
</tbody>
</table>

The Brunauer-Emmett-Teller (BET) theory

The BET theory, is the most commonly used system for this purpose [8]. When deducing their equation, the authors assumed that first a layer of a single molecule's width will develop with continuous growth during the adsorption, followed by a multilayer covered stage and then by gas condensation (Figure 3.8-1).
In the practice, only the short form of their equation - suitable for the description of the total adsorption isotherm - is used for the surface area determination:

\[
\frac{P}{V(P_0 - P)} = \frac{1}{V_m} + \frac{C-1}{V_mC} \cdot \frac{P}{P_0}
\] \hspace{1cm} (2)

where: \(V_m \) = amount of gas required for monomolecular layer formation,
\(V \) = adsorbed gas-volume (normal condition),
\(P \) = equilibrium pressure of the adsorbed gas-layer,
\(P_0 \) = saturated gas-pressure of the adsorbed gas, belonging to the given temperature,
\(C \) = constant.

Specific surface area is determined on the basis of \(V_m \). For the determination of its value, \(V_m \) can be expressed from the equation (2) or it can be graphically determined by using the above linear form. In this case several \(P-V \) values will be plotted in the co-ordinate system and the value of \(V_m \) is determined from the axial section and slope of the resulting straight line.

\[
\frac{P}{P_0} = \frac{P}{V(P_0-P)}
\] \hspace{1cm} (3)
In equation (2) the constant C is a number without dimension: in the first approach its value can be calculated by means of the following relationship [9]:

$$C = \exp \left(\frac{E_I - E_L}{R_0 T} \right)$$ \hspace{1cm} (4)

where: E_I = adsorption energy of the single layer,
E_L = condensation energy of the adsorbed gas or vapour,
R_0 = universal gas constant.

In case of the most frequently used nitrogen-adsorption calculations, the value of $C = 240$ is resulted [10, 11].

The specific surface area (S_m) is given from the value of v_m by the following relationship [9]:

$$S_m = \frac{S_0 v_m}{W}$$ \hspace{1cm} (5)

where: W = weight of the adsorbent (g),
S_0 = is a constant, it represents the surface requirement of 1 cm2 normal condition gas, in case of monomolecular adsorption. Its dimension is m2/m3. Its value can be calculated from surface area requirement of the adsorbed molecules by using the following formula [9, 10, 11]:

$$S_{01} = S_1 \cdot n$$ \hspace{1cm} (6)

where: n = the Loschmidt number,
S_1 = surface area requirement of the gas molecule, calculated on the basis of the liquid state density,
S_{01} = surface area requirement of 1 cm2 of normal condition gas, calculated on the basis of the liquid state density.

Surface area requirement of the gas molecule (S_1) according to Brunauer, can be calculated as follows [55]:

$$S_1 = 4 \cdot 0.866 \left(\frac{M}{4\sqrt{2N} \cdot 1} \right)^{2/3} \text{cm}^2$$ \hspace{1cm} (7)

where: M = molar weight of the gas (or vapour),
ρ = density of liquid state adsorbate,
N = Avogadro number.

Equation (2) can be used for the majority of adsorbents in the:
\[\frac{P}{P_0} = 0.05 - 0.35 \] \{8\}

or sometimes in the:

\[\frac{P}{P_0} = 0.05 - 0.50 \] \{9\}

relative pressure range, which precedes and follows the shaping of the single molecule layer.

The most accurate determination of the specific surface area by the BET method can be done using the values measured on 4-5 points of the isotherm. The result of the three-point determination deviates from this value only slightly [56]. In case of large series measurements the one-point method can also be used [2].

Measuring units of the specific surface area were first used in the alumina industry when production of special aluminas was started. Since that time it is an important qualification parameter of Al$_2$O$_3$ adsorbents, catalyst carriers, synthetic industry fillers and abrasives [57].

During the 20-30 years that have passed since the introduction of surface measurements in the alumina industry, it proved to be evident that the information gained by these measurements can variously be utilized in the industrial technology, and that they also provide significant data for the technological development. To demonstrate these, the surface area of some special products are collected in Table 3.8-2.
Table 3.8-2
Surface area of some special products of the alumina industry

<table>
<thead>
<tr>
<th>Products</th>
<th>Surface area (\text{m}^2/\text{g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special alumina BAIKALOX</td>
<td></td>
</tr>
<tr>
<td>CR 30</td>
<td>30.1</td>
</tr>
<tr>
<td>CR 15</td>
<td>15</td>
</tr>
<tr>
<td>CR 10</td>
<td>10</td>
</tr>
<tr>
<td>CR 6</td>
<td>6</td>
</tr>
<tr>
<td>A 85</td>
<td>85</td>
</tr>
<tr>
<td>CR 85</td>
<td>85</td>
</tr>
<tr>
<td>A 125</td>
<td>105</td>
</tr>
<tr>
<td>CR 125</td>
<td>125</td>
</tr>
<tr>
<td>Special alumina REYNOLDS</td>
<td></td>
</tr>
<tr>
<td>RC-HP</td>
<td>3-6</td>
</tr>
<tr>
<td>RC-HP DBM</td>
<td>6-9</td>
</tr>
<tr>
<td>Special alumina ALCOA</td>
<td></td>
</tr>
<tr>
<td>AL-150 SG</td>
<td>5</td>
</tr>
<tr>
<td>AL-160 SG1</td>
<td>8</td>
</tr>
<tr>
<td>AL-170</td>
<td>2.5</td>
</tr>
<tr>
<td>A-50 N</td>
<td>15</td>
</tr>
<tr>
<td>High purity alumina Vereinigte Al-werke</td>
<td>415</td>
</tr>
<tr>
<td>Special alumina SHOWA ALUMINIUM</td>
<td></td>
</tr>
<tr>
<td>AL-150 SG</td>
<td>5</td>
</tr>
<tr>
<td>A-171</td>
<td>1.5</td>
</tr>
</tbody>
</table>

3.8.2 Porosity and distribution of pore volume

The relation between the pore volume \(V_{\text{pore}} \) and the total volume \(V_{\text{total}} \) of the porous material is called porosity \(\varepsilon \).

\[
\varepsilon = \frac{V_{\text{pore}}}{V_{\text{total}}} \tag{10}
\]

The porosity can be calculated with best accuracy using volumes measured in helium and mercury. In this case \(V_{\text{total}} \) represents the volume measured in mercury and \(V_{\text{pore}} \) is the difference of the
volumes measured in mercury and helium.

The measuring unit of porosity gives information only for the total volume of pores in a unit volume material. In case the dimensions and size distribution of the pores are also required, the pore-size distribution function must also be determined (Figure 3.8-2). The function provides information about the pore-sizes and the frequency of the different size pores. These data serve as information for the accessibility of the so-called internal surface (surface area of the pores), i.e. they will indicate the size of molecules able to penetrate into the pores.

Apart from this, the size of the pores and their size distribution is in relationship with the solidity, contraction, compressibility [58], moreover, in case of fillers, with the grain-bounding characteristics of the binding material, too.

3.8.2.1 Determination methods of pore-size distribution

Several measuring methods have been developed for the determination of the size distribution curve [58]. The most important measuring processes and the related literature are enlisted in Table 3.8-3.
Table 3.8-3
Most important methods of determination of porosity- and pore distribution

<table>
<thead>
<tr>
<th>Designation of the measuring method</th>
<th>Reference</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density tests in Hg and helium</td>
<td>59, 60</td>
<td>Provides only the total pore volume or porosity, resp.</td>
</tr>
<tr>
<td>Optical microscopy</td>
<td>-</td>
<td>Measuring limit: 0.5 μm. Provides the pore diameter and pore shape, but not the pore volume</td>
</tr>
<tr>
<td>Electron microscopy</td>
<td>61</td>
<td>Gives the pore diameter and pore shape</td>
</tr>
<tr>
<td>Gas-adsorption method with the help of adsorption and desorption isotherms</td>
<td>62, 63</td>
<td>Determination of pore volume and pore size distribution in the pore-range of r = 1.4–30 nm</td>
</tr>
<tr>
<td>Mercury porosimetry</td>
<td>64, 65</td>
<td>Range of measuring: r = 3–10³ nm</td>
</tr>
<tr>
<td>Small angle X-ray dispersion</td>
<td>66</td>
<td>Suitable to measure the pore distribution of materials containing pores of relatively homogeneous size distribution and of small diameter (20 nm)</td>
</tr>
<tr>
<td>Measurement of gas/vapour sucking over velocity</td>
<td>67</td>
<td>Difficult to reproduce</td>
</tr>
<tr>
<td>Luminescence method</td>
<td>79, 80</td>
<td>Pore diameter average only</td>
</tr>
</tbody>
</table>

As it can be seen, density test provides only the pore volume. The optical microscopy does not give the pore volume since either its measuring range is not sufficient, or it is not proper for the determination of the total distribution. The X-ray dispersion method is applicable only in case of certain materials. The measuring method of the sucking over velocity can be used for comparative measurements of materials of the same type, and the luminescence method gives only pore diameter average. As a result of the above, the gas-adsorption and mercury methods became widespread in the practice. The data of the two methods satisfactorily correspond to each other in the range of greater pore-sizes. In the size range of pores with radiants <10 nm,
there can be a considerable deviation between the data gained by
the two methods. Among others, the deformation effect of the high
pressure mercury is mentioned as the reason of this deviation
and, therefore, in the size range of <10 nm, data of the gas-
adsorption method are considered to be more reliable. Owing to
the above, the two measuring techniques practically complete each
other.

3.8.2.2 Determination of pore-size distribution by gas-adsorption

In case the gas/vapour isotherm on an adsorbent is determined by
means of increasing and then decreasing series of pressures, the
adsorption- and desorption-isotherms of the given material will
be obtained as a result Figure 3.8-3.

\[
\frac{P}{P_0} = \frac{2TV}{rRT} \cdot \cos\theta
\]

where: \(P \) = pressure of the adsorbate (gas/vapour),
\(P_0 \) = equilibrium vapour pressure of the adsorbate at
its boiling point temperature,
\[\Gamma = \text{surface tension of the adsorbate, in liquid state}, \]
\[V = \text{molar volume of the adsorbate} = \frac{M}{\rho}, \]
\[M = \text{molar weight of the adsorbate}, \]
\[\rho = \text{density of the adsorbate, in liquid state}, \]
\[r = \text{pore-radius}, \]
\[R = \text{universal gas constant}, \]
\[T = \text{temperature (K)}, \]
\[\theta = \text{wetting contact angle}. \]

After expressing the value of "r" from the Kelvin equation, the pore-radius sizes belonging to the individual p-values of the isotherm can be calculated. With the help of these values and of the total pore spaces, the pore distribution function can be determined (Figure 3.8-4).

![Figure 3.8-4](cumulative-por-distribution-curve-of-bayer-alumina.png)

Figure 3.8-4
Cumulative por distribution curve of Bayer alumina

3.8.2.3 Determination of pore distribution by mercury porosimetry

Tests of gas-adsorption pore-size determination are mostly performed with nitrogen gas. The distribution function of the 1.5 - 30 nm pore-radius range can be determined with nitrogen (65-68). Within the range of pores above this size, the tests are generally performed by mercury porosimeters [58, 65, 68, 69, 70].
Mercury porosimetry is based on the realization that liquids having a wetting contact angle \((\theta) \) on the given material greater than 90°, can only intrude into the pores in case pressure is applied on them. The restrictive factor which must be suppressed by pressure is the surface tension of the liquid. Quantitative relationship between the radius \((r) \) and the pressure \((P) \) necessary to fill the capillary of the given dimension is described by the Washburn or Young-Laplace formula \([58, 68, 69]\):

\[
P_r = 2 \gamma \cos \theta \tag{12}
\]

where:
- \(\gamma \) = surface tension of the liquid,
- \(\theta \) = wetting contact angle of the liquid on the surface of the capillary.

The pore distribution can be determined by the help of the formula, in case the amount of liquid intruding into the pores is determined in function of the pressure \((P) \).

Distribution measurements are generally performed with mercury and in most of the tests, the value of the peripheral angle is accepted to be 140°.

As for the accuracy of tests, the purity of the mercury is high importance, as its contaminants considerably change the surface tension \((\gamma) \). Surface tension of the pure mercury is 480 din/cm (0.048 N/nm) \([69]\). Calculating with \(\theta = 140° \) and \(\gamma = 480 \) din/cm, and assuming that the pores are of cylindric shape, the relationship \([8]\) can be simplified to the following form \([69]\):

\[
r = \frac{7500}{P} \text{ nm} \tag{13}
\]

With the help of the formula, the size of radius belonging to the individual pressure values can quickly be calculated, and the cumulative and frequency curves, respectively, can be constructed by the method described at the gas-adsorption system (Figure 3.8-2 and 3.8-5).
3.8.3 Grain-size distribution

Several methods were elaborated to determine the grain-size. The different methods are collected in Table 3.8-4. Owing to their accuracy and reliability the methods of sedimentation are extensively used for measurement of Bayer alumina co- and by-products. Therefore, and because of their significance, they will be discussed in details. References on the other methods are given in Table 3.8-4.
Table 3.8-4
Methods for determination of the grain-size

<table>
<thead>
<tr>
<th>Methods</th>
<th>Measuring range</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>>10000</td>
<td>-</td>
</tr>
<tr>
<td>Sieve</td>
<td>25-10000</td>
<td>73, 74</td>
</tr>
<tr>
<td>Sieve with micro mesh sieves</td>
<td>5-150</td>
<td>75, 76</td>
</tr>
<tr>
<td>Hindered sedimentation</td>
<td>4-3000</td>
<td>74</td>
</tr>
<tr>
<td>Spiral air-elutriator</td>
<td>5-60</td>
<td>75, 76</td>
</tr>
<tr>
<td>Sedimentation</td>
<td>0.5-200</td>
<td>75, 81</td>
</tr>
<tr>
<td>Sedimentation in gas</td>
<td>2-200</td>
<td>74, 75</td>
</tr>
<tr>
<td>Measuring of electric conduction</td>
<td>2-200</td>
<td>74</td>
</tr>
<tr>
<td>Optical microscopy</td>
<td>0.5-300</td>
<td>81, 82, 83</td>
</tr>
<tr>
<td>Flow-percussion</td>
<td>0.2-100</td>
<td>74</td>
</tr>
<tr>
<td>Absorption of radiation</td>
<td>0.2-50</td>
<td>84, 85</td>
</tr>
<tr>
<td>Measuring of light dispersion</td>
<td>0.1-30</td>
<td>75, 81</td>
</tr>
<tr>
<td>Gotz-aerosol spectrometer</td>
<td>0.03-5</td>
<td>75, 76</td>
</tr>
<tr>
<td>X-ray method</td>
<td>0.01-0.1</td>
<td>74, 81</td>
</tr>
<tr>
<td>Centrifugal sedimentation</td>
<td>0.001-20</td>
<td>76, 86</td>
</tr>
<tr>
<td>Electron microscopy</td>
<td>0.001-10</td>
<td>74, 75</td>
</tr>
<tr>
<td>Measurement with pulverisation</td>
<td>-</td>
<td>81</td>
</tr>
<tr>
<td>Classifying by gassteam</td>
<td>only grain</td>
<td>81, 87</td>
</tr>
<tr>
<td></td>
<td>size average</td>
<td></td>
</tr>
<tr>
<td>Calculated from specific surface area</td>
<td>only grain</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>size average</td>
<td></td>
</tr>
</tbody>
</table>

3.8.3.1 Sedimentation methods for determination of grain-size distribution

Several methods and measuring units are known in this field, however, evaluation is always based on the Stokes' equation:
\[v = \frac{1}{18} \left(\rho_s - \rho_1 \right) \cdot a \cdot d^2 \] \hspace{1cm} \{14\}

where:
- \(v \) = final velocity,
- \(d \) = diameter of the equivalent sphere,
- \(\rho_s \) = density of the solid sample,
- \(\rho_1 \) = density of the measuring medium (liquid or gas),
- \(\eta \) = dynamic viscosity of the measuring unit,
- \(a \) = acceleration of the field/gravitational (g), or centrifugal (\(r \cdot \omega^2 \)).

But \(v = \frac{h}{t}, \) therefore can be written:

\[d = \frac{18 \eta}{(\rho_s - \rho_1)a} \cdot \frac{h}{t} \] \hspace{1cm} \{15\}

where:
- \(h \) = height of the liquid (gas) column,
- \(t \) = time.

On the basis of determining the quantity of the settled solid as function of the time, can be calculated the grain-size distribution (Figure 3.8-6).

Figure 3.8-6
Determination of the grain-size distribution
Sedimentation in liquids is generally more accurate than in gas, therefore, the former method is more widespread. The equipment of the traditional, old methods are very simple, but the up-to-date methods are significantly quicker and generally of automatic evaluation.

These up-to-date instruments determine the quantity of a given time settled, solid sample with:

- measure of the absorption of light,
- measure of the absorption of radioactive \(\Gamma \)-radiation,
- measure of the absorption of X-ray,
- measure of the absorption of laser-ray.

There are instruments in which the gaseous or liquid medium flow upwards and other ones which work in centrifugal field [88, 89, 90].

These modern instruments give not only the mass grain-size distribution, but the number and area distribution, too. In Figure 3.8-7 grain-size distribution curve of special alumina determined with such instruments is given.

![Grain-size distribution curve of high purity ceramic aluminas](image-url)
References

3.9 PRECISION OF TEST METHODS - DETERMINATION OF REPEATABILITY AND REPRODUCIBILITY OF TESTS

J. Sasvári

Determination of repeatability (r) and reproducibility (R) may be applied in a variety of ways. They can serve:

- to verify that the experimental technique of a laboratory is up to standard;
- to test the results of standardization experiments;
- to compare tests performed on a sample from a batch of material with a specification;
- to compare test results obtained by a supplier and a consumer on the same batch of material, etc.

3.9.1 Definitions

The repeatability r is the value below which the absolute difference between two single test results obtained with the same method on identical test material, under the same conditions (same operator, same apparatus, same laboratory, and a short interval of time), may be expected to lie with a specified probability; in the absence of other indications, the probability is 95%.

The reproducibility R is the value below which the absolute difference between two single test results obtained with the same method on identical test material, under different conditions (different operators, different apparatus, different laboratories and/or different time), may be expected to lie with a specified probability; in the absence of other indications, the probability is 95%.

3.9.2 Practical implications of the definition

That standard must be applied in all the tests forming part of a precision experiment. The values of r and R derived from such an experiment should always be quoted as valid only for tests carried out according to that standard.

3.9.3 Statistical model

For estimating the precision of a test method, it is useful to assume that every single test result y is the sum of the three components:
\[y = m + B + e \] \hspace{1cm} \{1\}

where, for the particular material tested, \(m \) is the average, \(B \) is a term representing the deviation of the laboratories from \(m \) and \(e \) is a random error occurring in every test. It is considered that equation \{1\} will cover the majority of practical cases.

The average \(m \) of the material tested will be called the level of the test property; different materials (for example different compositions of alumina) will correspond to different levels.

The term \(B \) is considered to be constant during any series of tests performed under repeatability conditions, but to behave as a random variable in a series of tests performed under reproducibility conditions. Its variance will be denoted by \(\text{var}(B) = \sigma_B^2 \) and called the laboratory variance. \(\sigma_B^2 \) includes the between-operator and between-equipment variabilities. The error term \(e \) in the model represents a random error occurring in every single test result. Within a single laboratory, its variance \(\text{var}(e) = \sigma_w^2 \) is called the within-laboratory variance.

It may be expected that \(s \) will vary between laboratories due to differences in the skills of the operators or in the quality of the equipment used.

This common value, which is an average of the variances taken over the laboratories participating in the precision experiment, will be called the repeatability variance and be designated by \(\text{var}(e) = \sigma_r^2 \).

When the model characterized above is adopted, the repeatability \(r \) and the reproducibility \(R \) are given by

\[r = f \sqrt{2} \sigma \] \hspace{1cm} \{2\}

\[R = f \sqrt{2} \sqrt{\sigma_L^2 + \sigma_r^2} = f \sqrt{2} \sigma_R \] \hspace{1cm} \{3\}

The coefficient \(f \) is derived from the fact that \(r \) and \(R \) refer to difference between two single test results.

The factor \(f \) will generally not differ much from the value 2 and the use of this value is therefore recommended in this International Standard. Hence:

\[r = 2.83 \sigma_r^2 \] \hspace{1cm} \text{and} \hspace{1cm} \[R = 2.83 \sigma_R^2 \]

3.9.4 Design of a precision experiment

One layout is as follows: samples from \(q \) batches of material, representing \(q \) different levels of the test property, are sent to \(p \) different laboratories, which are instructed to perform \(n \) tests.
under repeatability conditions at each level. These n tests are thus made on identical material and this type of experiment will be called a uniform-level experiment.

An alternative, preferred in certain cases is the split-level experiment: each level is split into two sub-levels A and B, which are slightly different only. Each laboratory receives one sample from each of these sub-levels for testing. Analysis of the data The analysis of the data produced by a precision experiment must be considered as a statistical problem.

3.9.5 Analysis of the data

The analysis of the data produced by a precision experiment must be considered as a statistical problem.

Three successive stages can be recognized, namely

a) a critical examination of the data in order to identify and treat outliers or other irregularities, and contingently to test the suitability of the model;

b) computation of preliminary values of r and R for each level separately;

c) establishment of final values of r and R including the establishment of a relation between r, R and m when the analysis indicates that they depend on the level m. If r and/or R are judged to be independent of m, the final values taken are the simple average over the levels. The analysis of a precision experiment recommended in this International Standard first computes for each level estimates, \(s_r^2 \) and \(s_R^2 \), of the repeatability variance and the between-laboratory variance, and from these derives the values of the repeatability r and the reproducibility R.

3.9.6 Statistical analysis of results of an inter-laboratory experiment

Each combination of a laboratory and a level will be called a cell of the precision experiment. In the ideal case, the results of an experiment with p laboratories and q levels will consist of a table with pq cells each containing n replicate results, that can all be used for computing the repeatability r and the reproducibility R. This ideal situation is not, however, always attained in practice. Departures occur due to redundant data, missing data, and outliers.

3.9.7 Recommended practice for investigating outliers

For this purpose, this International Standard recommends the use of Cochran's maximum variance test and Dixon's outlier test in
combination with the following procedure.

If the Cochran's or Dixon's test statistic (P) is less than its 5% critical value: the item tested is accepted as correct; the test is said to be statistically insignificant.

If the test statistic lies between its 5% and 1% critical values: the item tested is called a straggler and marked with a single asterisk; the test is said to be statistically significant.

If the test statistic is greater than its 1% critical value: the item is called a statistical outliers and is marked with a double asterisk; the test is said to be statistically highly significant.

P is the probability of the observed value of the test statistic. The 5% and 1% critical values for Cochran's and Dixon's tests are given in [1].

3.9.8 Notation, definitions and basic formulas

The ideal case is p laboratories \(L_i \) (\(i=1,2,\ldots,p \)) q levels \(M_j \) (\(j=1,2,\ldots,q \)) and n replicates per \(L_iM_j \) combination, with a total npq results of the test. This ideal situation is not always attained because of the existence of redundant, missing or outlying results, or outlying laboratories.

3.9.8.1 Original test results

Case of a uniform-level experiment \(n_{i,j} \) is the number of results in cell \(L_iM_j \). \(Y_{ij,k} \) is any one of these results \((k=1,2,\ldots,n) \). When all the results from one or more laboratories are eliminated at a level \(j \), the number of the laboratories for this level is designated by \(p_j \).

Case of a split-level experiment \(Y_{ij,A} \) and \(Y_{ij,B} \) are the results obtained, respectively at sub-levels A and B, level \(j \), lab. \(i \). The notation \(p \) is also applicable to this case.

3.9.8.2 Measures of cell spread

Case of a uniform-level experiment, for the general case, use the intra-cell standard deviations \(s_{ij} \), given by equation (4)

\[
s_{ij} = \sqrt{\frac{1}{n_{ij}-1} \sum_{k=1}^{n_{ij}} (Y_{ij,k} - \bar{Y}_j)^2}
\]
For particular case where all \(n_{ij} = n = 2 \), use the cell range without regard for sign.

\[w_{ij} = |Y_{ij1} - Y_{ij2}| = s \cdot \sqrt{2} \]

Case of split-level experiment, the cell difference is given

\[d_{ij} = Y_{ijA} - Y_{ijB} \]

taking the sign account.

3.9.8.3 Cell averages for uniform split-level experiment

\[\bar{y}_u = \frac{1}{n_u} \sum_{i=1}^{n_u} y_{ui} \]

The cell averages should be given with one more significant figure than the test results.

3.9.8.4 Repeatability variance \(s_r^2 \) and between-laboratory variance \(s_L^2 \)

For a given level \(j \), the values of \(s_r^2 \) and \(s_L^2 \) are given by the following equations where, for convenience, the index \(j \) has been dropped.

Case of a uniform-level experiment

\[
\begin{align*}
\sum_{i=1}^{p} \frac{(n_i - 1)s_i^2}{(\sum_{i=1}^{p} n_i) - p} &= \frac{1}{p-1} \sum_{i=1}^{p} n_i (\bar{y}_i - \bar{y})^2 - s_r^2 \\\nand \quad \bar{y} &= \frac{1}{p-1} \left[\sum_{i=1}^{p} n_i \bar{y}_i \right] - \frac{1}{p-1} \sum_{i=1}^{p} n_i \end{align*}
\]
Case of split level experiment

\[s_i^2 = \frac{1}{p-1} \sum_{i=1}^{s} (\bar{y}_i - \bar{y})^2 - \frac{s_i^2}{2} \]

with \(\bar{y} = \frac{1}{p} \sum_{i=1}^{s} \bar{y}_i \)

\[s_i^2 = \frac{1}{2} \frac{1}{p-1} \sum_{i=1}^{s} (u_i - d)^2 \]

with \(d = \frac{1}{p} \sum_{i=1}^{s} d_i \)

3.9.9 Maximum variance test of Cochran

Cochran's test applies only to uniform level experiments as it is of homogeneity of variance. Cochran's criterion investigates only the highest value in a set of standard deviations or ranges and therefore it is considered as a one-sided outlier test.

Given a set of \(p \) standard deviations \(s_i \), all computed from the same number \(n \) of replica test results, Cochran's criterion \(C \) is given by

in the case of \(n \) replicates

\[C = \frac{s_{\text{max}}^2}{\sum_{i=1}^{s} s_i^2} \]

in the case of 2 replicates

\[C = \frac{w_{\text{max}}^2}{\sum_{i=1}^{s} w_i^2} \]

In these expressions, \(s_{\text{max}} \) and \(w_{\text{max}} \) stand for the highest values in the set. If the test is significant, \(s_{\text{max}} \) (or \(w_{\text{max}} \)) is classified as straggler or statistical outlier. Critical values for Cochran's criterion at 5% and 1% levels for \(n=3 \) to 40 are given in [1].
3.9.10 Outlier test of Dixon

Given a set of data \(x(h) \), \(h=1,2,3,...,N \), arranged in order of magnitude, then Dixon’s test uses the following test statistics:

<table>
<thead>
<tr>
<th>(H)</th>
<th>Test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 to 7</td>
<td>(Q_{10}) = the larger of (\frac{z(2) - z(1)}{z(H - z(1))}) and (\frac{z(H) - z(H - 1)}{z(H) - z(1)})</td>
</tr>
<tr>
<td>8 to 12</td>
<td>(Q_{11}) = the larger of (\frac{z(2) - z(1)}{z(H - 1) - z(1)}) and (\frac{z(H) - z(H - 1)}{z(H) - z(2)})</td>
</tr>
<tr>
<td>13 or more</td>
<td>(Q_{22}) = the larger of (\frac{z(3) - z(1)}{z(H - 2) - z(1)}) and (\frac{z(H) - z(H - 2)}{z(H) - z(3)})</td>
</tr>
</tbody>
</table>

Critical values of these test statistics at the 5% and 1% level and for \(H=3 \) to 40 are reproduced in [1].

In analysing a precision experiment, Dixon’s test can be applied

a) to the test results within a cell when \(n_{ij} \geq 3 \), but this procedure should only be used where Cochran’s test has suggested an outlier or straggler, in order to see whether this was due solely to one observation; in that case \(h=k, H=n_{ij} \), and \(z(h) = y_{ijk} \), \(i \) and \(j \) both being fixed;

b) to the cell averages for a given level \(j \) in table C, when in that case \(h=i, H=p_{j} \), and \(z(h) = \text{average}(y_{ij}) \), \(j \) being fixed;

c) to the cell differences, \(d_{ij} = y_{ijA} - y_{ijB} \), for a given level of a split-level experiment, when in that case, \(h=i, H=p_{j} \), and \(z(h) = d_{ij} \), \(j \) being fixed.
In split-level experiment, Dixon's outlier test must be applied
to the cell differences d_i.

3.9.13 Establishing a functional relation between r (or R) and m

It cannot always be taken for granted that there exists a regular
functional relation between r (or R) and m. The reasoning and
computational procedures presented below apply to both r and R;
they are presented for r only. Only two types of relationship
will be considered:

- a linear relation: $r = u + \gamma m$
- a logarithmic relation: $\log r = \log C + \delta \log m$

This should be a weighted regression because, statistically, the
standard error of r is proportional to the value of r. The
weights W must be proportional to r^{-2}.

References

[1] International Standard ISO 5725
CHAPTER 4

ESTABLISHMENT OF NEW CAPACITIES
4.1 SOME ASPECTS OF ENGINEERING IN A DEVELOPMENT PROJECT: A CASE STUDY

Gy. Bárányi, E. Molnár, Zs. Porkoláb, E. Szabados

Someone said, "The scientist makes things known, the engineer makes things work." [1]. This statement is not an exact definition, nevertheless it shows the core of engineering.

Engineering is a highly complex service which is necessary to carry out a task of a technical nature from the origination of the idea until the smooth operation.

There are lots of investments, such as roads, railways, water supply systems, hospitals, universities, etc., where the indirect, sometimes long-term effects prove the benefits of the implementation.

A project may last from some weeks to several years. Its value can vary from some ten thousands of USD up to several billions if the implementation is included. In spite of the great variety of complexities of such projects, a number of common aspects can also be found.

4.1.1 Preliminary considerations

Thinking a project idea (for example, setting up a new aluminium-sulphate plant) over thoroughly, several questions arise:

Which processes known for manufacturing aluminium-sulphate are used in industrial scale?
What kind of materials and energy are needed?
What quality of the product can be maintained by the processes?
What capacity plant should be set up?
Can our product replace the present supply?
Is the manufacturing process in the public domain or is it protected by patents?
Who will supply the designs, the equipments, the production know how?
Shall we consider a turn-key investment?
Where to locate the plant?
How will the raw materials and energy sources be transported to the site?
Does the plant generate any waste product and/or environmental hazard?
How large an area is needed for the plant?
How many employees are required for the smooth operation, with what qualifications and skills?
How much capital is needed to set up a new plant?
What parts of the plant can be worth to supply from domestic sources? What operating costs and production costs can be expected in the plant? How much time is needed to implement the investment? Considerable skilled engineering work is needed to figure out the reasonable answers.

4.1.2 Stages of a typical development project

I. Pre-investment phase
 - Identification of investment opportunities (project ideas)
 - Preliminary selection stage (Opportunity Study, Pre-feasibility Study)
 - Techno-economic Feasibility Study
 - Evaluation and decision

II. Investment phase
 - Basic engineering
 - Negotiation and contracting
 - Project design and detailed engineering design
 - Construction
 - Training, Start up

III. Operational Phase

The duration and peaks in the activity of investment promotion, implementation planning, and management and capital investment expenditures are shown in Figure 4.1-1.
4.1.3 Project formulation, promotion

It is not too easy to find a partner whose interest is to work out project ideas, moreover, who has the financial resources to cover the costs of the pre-investment phase. International organizations such as UNIDO, UNDP, WHO, FAO, UNESCO, IBRD, IDA, UNDR, UNEP, etc., international development banks and agencies play an important and unique role in the developments. The contribution of governments in formulation and promotion of development projects should be emphasized.

4.1.4 Pre-investment studies

A comprehensive survey of technical, financial, social aspects of a new development can establish an investment decision. Various kinds of studies are prepared with this purpose. A short review of these studies is based on the respective UNIDO Manual [2].

4.1.4.1 Opportunity study, Pre-feasibility study

An opportunity study is usually the first, fairly general approach to formulate the development needs/possibilities of an
area, a region, a subsector of the economy, etc. The opportunity study should identify investment opportunities or project ideas which will be subject to further scrutiny once a proposition has been proved viable.

A Pre-feasibility study is an intermediate stage between a project opportunity study and a Feasibility study. The pre-feasibility and feasibility study usually deal with the following items:

(a) Market and plant capacity: demand and market study, sales and marketing, production programme and plant capacity, prices;
(b) Material and energy inputs;
(c) Location and site;
(d) Project engineering: technologies and equipment, and civil engineering works;
(e) Overheads: factory, administrative and sales;
(f) Manpower: labour and staff, training;
(g) Project implementation;
(h) Financial analysis: investment costs, project financing, production costs, and commercial profitability.

Both opportunity study and pre-feasibility study are rarely carried out before preparation of a feasibility study.

4.1.4.2 Support (functional) studies

- Market studies of the products to be manufactured, including demand projections in the market to be served together with anticipated market penetration.
- Raw material and input studies, covering present and projected availability of raw materials and inputs basic to the project, and the present and projected price trends of such inputs.
- Laboratory and pilot plant tests. These tests are carried out in cases when raw materials have individual characteristics, developments are envisaged, etc.
- Location studies. Particularly for potential projects where transport costs would constitute a major factor of costs.
- Economics of scale studies. The task of these studies is to evaluate the size/capacity of the plant that would be the most economic considering alternative technologies, investment costs, production costs, prices.
- Equipment selection studies. Large investments, especially, need special support studies of this kind.
- Environmental impacts. These studies can be important to eliminate the environmental hazards as much as possible; to evaluate processing and/or disposal of wastes.

These support studies can be parts of the pre-investment studies, however, they can also be elaborated separately, parallel to, or prior to the particular study.
4.1.4.3 Feasibility Study

The Feasibility Study must provide a base – technical, economic and commercial – for an investment decision on an investment project. It should define and analyze the critical elements that relate to the production of a given product together with alternative approaches to such production. Such a study should provide a project of a defined production capacity at a selected location, using a particular technology in relation to defined materials and inputs, at identified investment and production costs, and sales revenues yielding a defined profitability of investment.

The scope of the feasibility study must be well clarified. The study should include all activities scheduled at the plant site; the auxiliary operations related to the production, extraction, off-site transport and storage of inputs, as well as that of outputs (final products, by-products, wastes and emissions) and such off-site ancillary activities as housing schemes and educational, training and recreational facilities.

The feasibility study is not an end in itself, it is a means to arrive at an investment decision that need not agree with the conclusions of the study.

The project planner should divide the entire project into easily calculable or computable components.

4.1.5 Alternatives, optimization

When a project idea is formulated, several variations occur, such as:

Raw material, energy sources
Process alternatives
Product quality
Capacity
Site location

Some of these variants can be studied and optimized within the battery limits, others in accordance with location of the plant.

Several assumptions are made when a project is carried out, especially in the early stages of the project (the costs of various equipment, expected unit prices, transportation costs, etc.). As the pre-investment phase progresses the number of variations decreases. Assumptions are replaced by offers, the time and cost estimations become more and more accurate as a result of calculations, discussions, and considerations.

The investment expenditures should occur within the least reasonable period, while the production costs occur continuously throughout the entire duration of operation. It is an art of the
design to minimize the sum of the investment and the production costs. In many cases operating costs can be reduced by increasing the investment cost (counter-current heat recovery systems, etc.). Optimization is the tool for maximization of the profit. Using computers for this purpose is the general practice.

4.1.6 Accuracy of cost estimates

The approximate accuracy of estimates of investment and production costs [2]:

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>An opportunity study</td>
<td>30 %</td>
</tr>
<tr>
<td>A pre-feasibility study</td>
<td>20 %</td>
</tr>
<tr>
<td>A feasibility study</td>
<td>10 %</td>
</tr>
</tbody>
</table>

These figures differ from project to project and according to applied cost estimation method. The investment cost estimations can be based on:

(a) Calling for tenders based on specifications and bills of quantities. This is the most accurate but also most expensive and time consuming method.

(b) Using the unit cost parameters from comparable operational projects.

(c) Estimating the totals for groups of equipment or functional project parts based on the costs of a comparable existing process.

The degree of accuracy decreases with the increase of coverage of the lump sums.

The material and energy demands can be calculated usually rather accurately for operating cost estimation than e.g. to make a forecast about the unit prices. The material and energy consumption can usually be calculated using laws of nature such as conservation of material and energy and reaction kinetic laws. Unit prices depend on highly unpredictable factors, such as shortages and surpluses, and sometimes economical and political crises.

4.1.7 Costs of the engineering

The costs of the pre-investment studies are approximately relative to the total implementation costs:

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Relative Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>An opportunity study</td>
<td>0.2 - 1.0 %</td>
</tr>
<tr>
<td>A pre-feasibility study</td>
<td>0.25 - 1.5 %</td>
</tr>
<tr>
<td>A feasibility Study</td>
<td>1.0 - 3.0 % for small industries, 0.2 - 1.0 % for large industries with sophisticated technology</td>
</tr>
</tbody>
</table>

The complexity of the engineering work to be done is highly
unrelated to the capacity of the particular plant. Consequently, the relative cost of the engineering work is higher for a small capacity plant than for a large one.

Typically, the costs of engineering in the pre-investment phase are marginal compared to the further investment expenditures.

4.1.8. The project team

The team which elaborates the pre-investment study should normally have members with the following expertise:

- Industrial economist
- Market analyst
- Technologist (process engineer) having skill in the particular industry
- Mechanical engineer
- Civil engineer
- Electrical engineer
- Process control engineer
- Industrial management/accounting expert

The team leader's responsibility, besides his role as a specialist, is to plan, organize, direct, and supervise all activities of the team until the study is finalized.

A project team may include departments of an engineering company or even outside consultants, contractor(s) for specific tasks (such as logistics, financing, legal and patent right issues).

4.1.9. The professionals and their role in the design process

Preparation of a Techno-economical Feasibility Study is focused on. All participants in the engineering have certain tasks and responsibilities, the extent of their activity is different from the basic engineering and detailed design. The design process and the role of the participants is presented in this chapter.

4.1.9.1. Process engineer

His task is the preparation of the process flow-sheet, elaboration of material and heat balances, and description of the process technology. These make a foundation for the following steps of the process and plant design. Determination of the process parameters (e.g., concentrations, temperatures, reaction times, etc.) and certain main sizes of the equipment (such as reaction time) is the responsibility of the process engineer, however the mechanical engineer is to be involved in these decisions.

The process engineer and process control engineer should be in
very close cooperation when the concept of process control is elaborated, however sometimes the mechanical engineer should also be involved.

The material and energy demands and outputs of the processing plant are also results of the material and heat balances. The quality of the product and its control is determined first of all by the process engineer.

4.1.9.2. Mechanical engineer

Sizing of the equipment (such as pumps, conveyors, mixing tanks, etc.) and the decision about its placement is the responsibility of the mechanical engineer. The mechanical engineer should be in close cooperation with process and civil engineers and also with the suppliers of equipment.

The mechanical engineer makes equipment lists showing the main features of the specifications, weight, and number of operating items. Certain auxiliary services, such as repair shops, are determined by the mechanical engineer.

The mechanical engineer and the civil engineer usually have great impact when the investments costs are determined.

4.1.9.3. Civil engineer

The feasibility study has to define the location and site suitable for the industrial project under consideration. The choice of location should be made from a fairly wide geographical area within which several alternative sites may have to be considered. The impact on the environment, of erecting and operating the industrial plant has to be studied during the site selection.

The data for the climate, sites and terrain, transport facilities, supply of input materials and energy (including power), waste disposal, and living conditions should be considered when the location is chosen. The transportation costs and costs of the site can have an important impact on the selection.

The mechanical engineer and civil engineer plan the plant lay-out. The climate, the properties of soil, etc. should be taken into consideration. Conceptual designs of the steel, concrete, reinforced concrete structures, and buildings are made during the feasibility study. The water supply, sewage system, and the power supply within the plant are also designed. The storage capacities, maintenance facilities, buildings for laboratory, management, canteen, and waste disposal are shown on the plant lay-out and they are also designed and described. An estimation of the required quantity of steel, concrete, bricks, etc. and the work force for the construction are also tasks of the civil engineer.
4.1.9.4. Electrical engineer

When the lay-out of the equipment is determined sizing the transformers according to the power consumption data is performed by the electrical engineer. The power demand of auxiliary services, and lighting should be taken into consideration.

4.1.9.5. Process control engineer

The process control engineer is deeply involved in the preparation of the concept of process control with the process engineer. The process control engineer implements the tasks of measurements, data logging, regulations etc. specified by the partners.

All kinds of professionals make investment cost estimations for those equipment and systems of the project which have been designed by the individual professional.

4.1.9.6. Economist

The economist calculates the components of the total investments cost (fixed assets, working capital, financial costs), sources of finance (equity and loans), and repayment period taking into consideration the grace-period and interest rate. It is also his task to calculate the production costs as a total of direct and indirect costs. The cash flow is a kind of balance of the sales revenue and expenditures. The internal rate of return and the break even point are also important results of the calculations made by the economist.

As it was previously mentioned, several assumptions are involved in the studies during the pre-investment phases. A sensitivity analysis shows the impact of the change of investment costs, time of implementation, financing conditions, unit prices, etc. on the production costs, return of investment, and other factors concerning the viability of the investment.

4.1.10. Organizational aspects

There are several organizational schemes which may be applied to the relationships among the Owners, contractors, consultants, sub-contractors, etc.

Participation of expert(s) as consultant partner(s) of the Owner can be useful especially when a project idea is formulated.

Opportunity and/or pre-feasibility studies, and feasibility studies are often prepared by engineering companies acting as contractor. It is more and more common that location of the company making these studies is far from the site of the intended
investment. Regular talks in the country of the planned new plant and in the country where the engineering company is located can be useful, especially when a complex project is prepared. The presence of experts at the company headquarters for an extended time may be necessary to facilitate cooperation. The goal is the open, continuous and thorough communication among the partners.

Consultants for specific tasks (such as logistics, financing, legal and patent right aspects) can extend the abilities of the project team.

The experts of the engineering company and local professionals may belong to a common team. In these case cost plus fixed fee is commonly selected for the compensation.

The time schedule is a useful tool for timing the various activities. A typical schedule for the implementation phase of an alumina plant is shown in Figure 4.1-2. Similar charts are prepared for most engineering works.

<table>
<thead>
<tr>
<th>PROJECT OVERVIEW SCHEDULE</th>
<th>South Chemicals Company, Aluminium Sulphate Plant</th>
<th>Greenville, Riverside County</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY</td>
<td>MONTHS</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PROJECT MANAGEMENT/</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETAILED DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCUREMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STARTUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.1-2
Project time schedule

4.1.11 The engineering company

The following activities belong to the scope of an engineering company: design, making specifications, bid analysis, vendor data review, assistance with construction, training and start up. The
role of the engineering company in the investment phase can be different from its participation in the Feasibility Study stage. For example, the engineering company can be a contracting partner for the design work, and can supervise the construction and provide training; however, the contractor for the whole implementation may be a special organization.

The engineering company is responsible for the proper design (process and equipment), equipment selection, estimation of the investment, and production costs. The engineering company cannot control the investment budget unless its task is a turn-key project. The engineering company can also play a consultant's role (e.g., it can provide laboratory tests for the Owner). The marketing of the product is usually beyond the scope of an engineering company; however, it can provide assistance in marketing.

The engineering company is a relatively stable organization, consisting of departments of process engineering, mechanical engineering, civil engineering, electrical engineering, process control engineering, economic analysis, procurement, and project management. These departments accumulate the experience of engineering gained through a number of projects. They delegate members to the team whose task is the preparation of the particular engineering activity.

4.1.12 A case study: Setting up an aluminium sulphate plant

Some aspects of engineering in the pre-investment phase is demonstrated by a case study of setting up a new aluminium-sulphate plant.

4.1.12.1 Project background

Let us suppose that there is a developing country where the single water supply plant in the capital provides only 20% of the population of the city with good-quality potable water. Some 5% of the sewage water generated in the capital goes into a sewage treatment plant where purification takes place before disposal. An investment project has been started to develop the water supply and sewage treatment system. The investment is underway with the help of a development bank. After completion of the first stage, some 60% of the population will be provided with good quality potable water and the sewage treatment plant will handle 60% of the sewage water generated in the capital. Aluminium-sulphate is used for water and sewage purification systems as the settling aid. Aluminium-sulphate has been used in the country for a long time. Traditionally it has been imported by a trading company.

The following idea for an investment project arose: Should we set up a plant for domestic production of aluminium-sulphate?
Let us suppose A, B and C, (all of them engineering, consulting and contracting companies), have skills in the field of alumina production. An inquiry was sent to them about a possible aluminium-sulphate plant, and some information was requested.

From the answers it is known that there are processes available using bauxite or aluminium-hydroxide as raw material. (There are processes to manufacture aluminium-sulphate from clays, however they are not in operation in industrial scale.) There are various product grades at different prices on the world market. The main users of aluminium-sulphate are water and sewage treatment plants and paper mills. The paper mills require the best quality.

There is bauxite mining and export and also alumina production and export in one of the neighbouring countries. Therefore the raw material supply can be provided for a new aluminium-sulphate plant. The sulphuric acid production is located some 1000 km from the capital, near to the site of crude oil mining and processing. Both sea-water and sweet water supply are available in various regions. There is a national high-voltage grid throughout the country.

4.1.12.2. Preparation of the study; design part

A decision was made to prepare a pre-feasibility study for a possible new aluminium-sulphate plant. A tender was called for this project and the engineering companies having expertise in this field. One of them was chosen. Common preparatory negotiations were held during the formulation of the scope of the pre-feasibility study.

A local company was sought to carry out the marketing of the product as consultant and also a bank to clarify the benefits granted for the investors and financial aspects of an implementation. The marketing company required assistance from the engineering company during discussions with the potential customers.

In order to obtain basic design data for the study, bauxite samples were required for laboratory tests by the engineering company. The aluminium trihydroxide is a common product with predictable behaviour in the particular process technology, therefore specification of quality is enough for study purposes.

A reference is made on the process technology of aluminium-sulphate production as it is detailed in Chapter 2.4.

The process and plant design work have been carried out as it was previously described. Some results of the design and evaluation stages are shown as examples here.

The quality of the possible raw materials is shown in Table 4.1-1. Table 4.1-2 contains the product quality for the two process alternatives i.e. when bauxite or aluminium trihydroxide is used as raw material.
Table 4.1-1
Quality of the raw materials

<table>
<thead>
<tr>
<th>BAUXITE</th>
<th>Moisture</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>ALUMINIUM TRHYDROXIDE</td>
<td>Moisture</td>
<td>11-12</td>
<td>57.5-58.5</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Al₂O₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>over 100 mm, max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SULPHURIC ACID</td>
<td>H₂SO₄</td>
<td>98.0-98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe max.</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1-2
Quality of the product

<table>
<thead>
<tr>
<th>RAW MATERIAL</th>
<th>BAUXITE</th>
<th>HYDRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>14.7 %</td>
<td>17-18 %</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.3 %</td>
<td>-</td>
</tr>
<tr>
<td>Alkalinity, max.</td>
<td>-</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Free H₂SO₄</td>
<td>-</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Fe max.</td>
<td>-</td>
<td>0.02 %</td>
</tr>
<tr>
<td>Residue max.</td>
<td>0.3 %</td>
<td>0.08 %</td>
</tr>
</tbody>
</table>

The conceptual process flowcharts for the two process variants are shown in Figure 4.1-3 and 4.1-4. The material consumptions, derived from the material and heat balances, when aluminium trihydroxide is processed, is shown as an example, in Table 4.1-3. Table 4.1-4 contains the specific material and energy consumption for both process variants. A typical main equipment list, Table 4.1-5, refers to the variant, when aluminium trihydroxide is the raw material. (The serial numbers are the respective ones shown in Figure 4.1-4.) Table 4.1-6 shows the investment cost estimate, and Table 4.1-7 the manpower for the two alternative process variants. The auxiliary and service equipment have been considered.
Figure 4.1-3
Conceptual process flow-sheet
aluminium sulphate production from bauxite
1-hopper; 2-weighing belt; 3-roll mills; 4-slurry tanks; 5-sulphuric acid tanks; 6-acid resistant lined reactors; 7-heat exchanger; 8-aluminium-sulphate solution filters or centrifuges; 9-aluminium-sulphate solution tanks; 10-cooling water tanks; 11-evaporator; 12-cooling plates; 13-crusher; 14-bucket elevator; 15-silos; 16-bag weights; 17-dust filters.
Figure 4.1-6
Conceptual process flow-sheet
aluminium sulphate production from aluminium trihydroxide
Table 4.1-3
Material consumption of the production of aluminium sulphate
Production rate: 36,000 t per year
Raw material: ATH

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Hydrate (12% moisture)</th>
<th>Sulphuric acid (98.5%)</th>
<th>Water</th>
<th>(for washing)</th>
<th>Steam (0.4 MPa)</th>
<th>NaClO3</th>
<th>kg</th>
<th>l</th>
<th>l</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per dosages</td>
<td>1,885</td>
<td>1,686</td>
<td>1,872</td>
<td>184</td>
<td>16</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate during</td>
<td></td>
</tr>
<tr>
<td>dosages (l/min)</td>
<td>100-120</td>
<td>160</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily consumption</td>
<td>50,895</td>
<td>45,533</td>
<td>50,555</td>
<td>4,968</td>
<td>432</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Production rate: 167.4 t/day, 27 dosages/day, 6.2 t/dosages, 5,160 operating hours/years*)
* 5 days/weeks the maintenance including

Table 4.1-4
Specific consumptions

<table>
<thead>
<tr>
<th>RAW MATERIAL</th>
<th>BAUXITE (16 % product)</th>
<th>ATH (17 % product)</th>
<th>kg</th>
<th>l</th>
<th>l</th>
<th>kg</th>
<th>l</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina hydrate (12 % moisture),</td>
<td>t</td>
<td>-</td>
<td>0.304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauxite (25 % moisture),</td>
<td>t</td>
<td>0.285</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphuric acid (98.5 %),</td>
<td>l</td>
<td>0.470</td>
<td>0.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water,</td>
<td>m²</td>
<td>1.5</td>
<td>0.332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam (0.4 MPa),</td>
<td>t</td>
<td>1.2</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power,</td>
<td>kwh</td>
<td>35.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1-5
Main equipment list
Plant: aluminium sulphate production
Variant: alumina hydrate as raw material

<table>
<thead>
<tr>
<th>Ser. No.</th>
<th>Equipment</th>
<th>Technical data</th>
<th>Number</th>
<th>Weight (t)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Op.</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>Bucket elevator</td>
<td>Q = 12 t/h</td>
<td>1</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>Sulphuric acid tank</td>
<td>H = 17.5 m</td>
<td>1</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>Reactors, lead lined, acid resistant brick wall</td>
<td>V = 7.25 m³</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>Screw conveyor</td>
<td>D = 5000 mm</td>
<td>3</td>
<td>1</td>
<td>32.0</td>
</tr>
<tr>
<td>5</td>
<td>Weight belt</td>
<td>M = 6300 mm</td>
<td>4</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>Cooling plate</td>
<td>L = 650 mm</td>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>Front end loader</td>
<td>L = 14500 mm</td>
<td>6</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>Crusher</td>
<td>L = 14500 mm</td>
<td>7</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>Silos</td>
<td>H = 6300 mm</td>
<td>8</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 4.1-6
Investment costs
(1000 USD)

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Bauxite</th>
<th>Hydrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>2,970</td>
<td>1,486</td>
</tr>
<tr>
<td>Civil works, site preparation</td>
<td>1,880</td>
<td>940</td>
</tr>
<tr>
<td>Construction</td>
<td>850</td>
<td>470</td>
</tr>
<tr>
<td>Design, know-how, organization</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>Construction supervision</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>Start-up, training</td>
<td>385</td>
<td>195</td>
</tr>
<tr>
<td>Contingencies (10 %)</td>
<td>690</td>
<td>355</td>
</tr>
<tr>
<td>Total</td>
<td>7,615</td>
<td>3,866</td>
</tr>
</tbody>
</table>

Implementation time
- 1 year
- 1 year
Table 4.1-7
Manpower (persons)

<table>
<thead>
<tr>
<th>Supervision</th>
<th>Bauxite</th>
<th>Hydrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Labour</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>24</td>
</tr>
</tbody>
</table>

4.1.12.3. Financial and economic evaluation of the study

The capital investment cost is the following for the two process alternatives: thousand USD

<table>
<thead>
<tr>
<th>Item</th>
<th>Bauxite</th>
<th>Hydrate</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed assets</td>
<td>7,615</td>
<td>3,886</td>
<td>3,749</td>
</tr>
<tr>
<td>Working capital</td>
<td>1,050</td>
<td>1,400</td>
<td>-350</td>
</tr>
<tr>
<td>Financing cost</td>
<td>305</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>Capital investment cost</td>
<td>8,970</td>
<td>5,421</td>
<td>3,549</td>
</tr>
</tbody>
</table>

As results show, the fixed assets and financing cost for the variant when aluminium trihydroxide is used as raw material, amount to only one half of the respective figures of the case, when bauxite is processed. The financing cost is due to the interest paid during the implementation.

The working capital includes the inventories, and the balance of other assets and liabilities. The difference between the two process variants is mainly due to the deviation in the receivables, cash in hand, and payables.

The capital investment cost for the aluminium trihydroxide processing is only 60% of the same for the bauxite processing.

Sources of finance

It was assumed that the fixed assets consist of 20% equity and 80% loans. The interest rate for the loan of the fixed assets is 10% per year as an average, the repayment period is 5 year, after a one year grace period. The working capital is covered by a rolling loan with an annual interest rate of 15%.
Production costs and sales revenue

Table 4.1-8 includes the items of direct material costs, wages and salaries and overheads, and the sales revenue as well, for one ton of product aluminium sulphate. As the table shows, the production cost is 144 USD/ton product for bauxite processing and 159 USD/ton for aluminium trihydroxide processing. The bauxite processing gives less material costs, but much more overhead costs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Bauxite Value USD/t</th>
<th>Bauxite %</th>
<th>Hydrate Value USD/t</th>
<th>Hydrate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauxite or aluminium hydrate</td>
<td>9 6.06</td>
<td></td>
<td>50 31.69</td>
<td></td>
</tr>
<tr>
<td>Sulphuric acid (98.5 %)</td>
<td>38 26.63</td>
<td>40 25.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0 .22</td>
<td>0 .04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>18 12.75</td>
<td>0 .04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>2 1.24</td>
<td>1 .32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other material costs (10 %)</td>
<td>7 4.68</td>
<td>9 5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECT MATERIAL COST</td>
<td>74 51.57</td>
<td></td>
<td>100 63.13</td>
<td></td>
</tr>
<tr>
<td>Direct wages and salaries</td>
<td>5 3.54</td>
<td>3 2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security, etc (50 %)</td>
<td>3 1.77</td>
<td>2 1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECT COST</td>
<td>82 56.88</td>
<td>105 66.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>18 12.49</td>
<td>9 5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and repair</td>
<td>4 2.91</td>
<td>2 1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>6 3.93</td>
<td>6 3.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and administration expenses</td>
<td>9 6.14</td>
<td>13 8.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingencies, 10 %</td>
<td>12 8.24</td>
<td>13 8.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION COSTS (EXCL. INTEREST)</td>
<td>131 90.60</td>
<td>148 93.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest:- for investment cost (average)</td>
<td>9 6.29</td>
<td>5 2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- for working capital</td>
<td>4 3.11</td>
<td>6 3.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION COSTS (INCL. INTEREST)</td>
<td>144 100.00</td>
<td>159 100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALES REVENUE</td>
<td>217 325</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFIT - excl. interest</td>
<td>89 177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- incl. interest</td>
<td>76 167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A much more valuable product can be manufactured by processing aluminium trihydroxide than bauxite as raw material, in spite of that the production costs are higher in that case.

The sales price, based on world market price lists, are 217 USD/ton and 325 USD/ton for the two processing alternatives, respectively.
Cash flow

The cash flow tables for the first 10 years of the investment are shown in Table 4.1-9 and Table 4.1-10 for the two variants.

Table 4.1-9

Cash flow

Variant: aluminium sulfate production from bauxite

(1991 price level)

<table>
<thead>
<tr>
<th>Item / years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales (kt)</td>
<td>0</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>324</td>
</tr>
<tr>
<td>Capital investment</td>
<td>8970</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8970</td>
</tr>
<tr>
<td>- Fixed assets</td>
<td>7615</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7615</td>
</tr>
<tr>
<td>- Working capital</td>
<td>1050</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1050</td>
</tr>
<tr>
<td>- Financing cost</td>
<td>305</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>305</td>
</tr>
<tr>
<td>Sources of finance</td>
<td>8970</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8970</td>
</tr>
<tr>
<td>- Equity</td>
<td>4322</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4322</td>
</tr>
<tr>
<td>- Loans</td>
<td>4648</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4648</td>
</tr>
<tr>
<td>- Others</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cash-flow</td>
<td>8970</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8970</td>
</tr>
<tr>
<td>Sales: revenue</td>
<td>7812</td>
</tr>
<tr>
<td>Production cost (excl.interest)</td>
<td>4606</td>
</tr>
<tr>
<td>Interest</td>
<td>734</td>
<td>606</td>
<td>478</td>
<td>350</td>
<td>222</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>3022</td>
</tr>
<tr>
<td>Production cost (incl.interest)</td>
<td>5340</td>
<td>5212</td>
<td>5084</td>
<td>4956</td>
<td>4828</td>
<td>4764</td>
<td>4764</td>
<td>4764</td>
<td>4764</td>
<td>4764</td>
<td>44476</td>
</tr>
<tr>
<td>Gross profit</td>
<td>2472</td>
<td>2600</td>
<td>2728</td>
<td>2856</td>
<td>2984</td>
<td>3048</td>
<td>3048</td>
<td>3048</td>
<td>3048</td>
<td>3048</td>
<td>25832</td>
</tr>
<tr>
<td>less: tax</td>
<td>742</td>
<td>780</td>
<td>818</td>
<td>857</td>
<td>895</td>
<td>914</td>
<td>914</td>
<td>914</td>
<td>914</td>
<td>914</td>
<td>7748</td>
</tr>
<tr>
<td>Tax - relief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Profit after tax</td>
<td>1730</td>
<td>1820</td>
<td>1910</td>
<td>1999</td>
<td>2089</td>
<td>2134</td>
<td>2134</td>
<td>2134</td>
<td>2134</td>
<td>2134</td>
<td>18084</td>
</tr>
<tr>
<td>less: repayment</td>
<td>2329</td>
<td>2329</td>
<td>2329</td>
<td>2329</td>
<td>2331</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>15847</td>
</tr>
<tr>
<td>Profit after tax and repayment</td>
<td>-599</td>
<td>-599</td>
<td>-619</td>
<td>-630</td>
<td>-642</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>2237</td>
</tr>
<tr>
<td>Depreciation</td>
<td>635</td>
<td>5715</td>
</tr>
<tr>
<td>Cash-flow</td>
<td>36</td>
<td>126</td>
<td>216</td>
<td>305</td>
<td>393</td>
<td>1719</td>
<td>1719</td>
<td>1719</td>
<td>1719</td>
<td>1719</td>
<td>7952</td>
</tr>
<tr>
<td>Cumulative cash-flow</td>
<td>36</td>
<td>162</td>
<td>378</td>
<td>683</td>
<td>1076</td>
<td>2795</td>
<td>4516</td>
<td>6233</td>
<td>7952</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1-10
Cash flow
Variant: aluminium sulfate production from hydrate
(1991 price level)

<table>
<thead>
<tr>
<th>Item / years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales (kt)</td>
<td>0</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>324</td>
</tr>
<tr>
<td>Capital Investment</td>
<td>5421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5421</td>
</tr>
<tr>
<td>- Fixed Assets</td>
<td>3866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3866</td>
</tr>
<tr>
<td>- Working Capital</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>- Financing Cost</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>Sources of Finance</td>
<td>5421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5421</td>
</tr>
<tr>
<td>- Equity</td>
<td>773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>773</td>
</tr>
<tr>
<td>- Loans</td>
<td>4648</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4648</td>
</tr>
<tr>
<td>- Others</td>
<td></td>
</tr>
<tr>
<td>Cash-flow</td>
<td></td>
</tr>
<tr>
<td>Sales Revenue</td>
<td>0</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>11700</td>
<td>105300</td>
</tr>
<tr>
<td>Production Cost (excl.Interest)</td>
<td>0</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>5327</td>
<td>47943</td>
</tr>
<tr>
<td>Interest</td>
<td>0</td>
<td>502</td>
<td>437</td>
<td>372</td>
<td>307</td>
<td>262</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>2700</td>
</tr>
<tr>
<td>Production Cost (incl.Interest)</td>
<td>0</td>
<td>5829</td>
<td>5764</td>
<td>5699</td>
<td>5634</td>
<td>5569</td>
<td>5537</td>
<td>5537</td>
<td>5537</td>
<td>5537</td>
<td>50643</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>0</td>
<td>5871</td>
<td>5936</td>
<td>6001</td>
<td>6066</td>
<td>6131</td>
<td>6163</td>
<td>6163</td>
<td>6163</td>
<td>6163</td>
<td>54657</td>
</tr>
<tr>
<td>less: Tax</td>
<td>0</td>
<td>1761</td>
<td>1781</td>
<td>1800</td>
<td>1820</td>
<td>1839</td>
<td>1849</td>
<td>1849</td>
<td>1849</td>
<td>1849</td>
<td>16397</td>
</tr>
<tr>
<td>Tax - Relief</td>
<td></td>
</tr>
<tr>
<td>Profit after Tax</td>
<td>0</td>
<td>4110</td>
<td>4155</td>
<td>4201</td>
<td>4246</td>
<td>4292</td>
<td>4314</td>
<td>4314</td>
<td>4314</td>
<td>4314</td>
<td>38260</td>
</tr>
<tr>
<td>less: Repayment</td>
<td>0</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2068</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>15848</td>
</tr>
<tr>
<td>Profit after Tax and repayment</td>
<td>0</td>
<td>2060</td>
<td>2105</td>
<td>2151</td>
<td>2196</td>
<td>2244</td>
<td>2914</td>
<td>2914</td>
<td>2914</td>
<td>2914</td>
<td>22412</td>
</tr>
<tr>
<td>Depreciation</td>
<td>0</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>323</td>
<td>2907</td>
</tr>
<tr>
<td>Cash-flow</td>
<td>0</td>
<td>2383</td>
<td>2428</td>
<td>2474</td>
<td>2519</td>
<td>2567</td>
<td>2337</td>
<td>2337</td>
<td>2337</td>
<td>2337</td>
<td>25319</td>
</tr>
<tr>
<td>Cumulative cash-flow</td>
<td>0</td>
<td>2383</td>
<td>4811</td>
<td>7285</td>
<td>9804</td>
<td>12371</td>
<td>15608</td>
<td>18845</td>
<td>22082</td>
<td>25319</td>
<td></td>
</tr>
</tbody>
</table>

The cumulative cash flow is almost 8 million USD for the case when bauxite raw material is used, and 25.3 million USD when aluminium trihydroxide is processed.
Profitability

Some indicators for a steady state evaluation are the following:

<table>
<thead>
<tr>
<th>Item</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bauxite</td>
</tr>
<tr>
<td>Profit/capital cost, %</td>
<td>30</td>
</tr>
<tr>
<td>Profit/sales revenue, %</td>
<td>35</td>
</tr>
</tbody>
</table>

These indicators are quite favourable. The disadvantage of using these indicators is that the time factor is not taken into consideration.

It is more informative, if the timing of expenditures and revenues are considered as a function of time. Let us assume that the duration of the project is 15 years for both process variants. The internal rates of return (IRR), i.e., the discount rate, when net present values give zero as a result of the difference of sales revenues and costs, are the following:

<table>
<thead>
<tr>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauxite</td>
</tr>
<tr>
<td>Internal Rate of Return (IRR), %</td>
</tr>
</tbody>
</table>

A comparison with the average profitability of other investments, the interests of deposits and loans, and with the inflation rate should be made in order to decide, whether this particular project is viable or not.

Sensitivity analysis

Various kinds of sensitivity analyses can be made as it has previously been described. These analyses are not included in this paper, because of the limited space.

The break-even point analysis was made as an example in this case. This reveals the impact of the utilization of the production capacity on the profitability/viability of the project. The following results were arrived at.

At least a 44.5 % utilization of the capacity should be attained in order to make any profit when bauxite is the raw material, while the respective figure is 24.2 % utilization for processing aluminium trihydroxide. The higher the utilization rate is above these figures, the greater gross profits can be made.
References

CHAPTER 5

MANAGING OF INFORMATION
5.1 ABOUT INFORMATION MANAGEMENT

5.1.1 Importance of information management

Information is the primary source of information for today's technology, business and first of all for innovation. Doing things better is doing things differently, more imaginatively and not just once but repeatedly. Success in this game depends on the application of information technology, what is a rather new branch of the industry.

The appropriate knowledge of information being important in a given question results in proper actions. It is essential especially in our accelerated century when it is easy to react too late to something, which the world has already determined.

Manufacturing could become a fruitless effort without information on markets and customers need. The outcome is that customers get not what they really want, but what the supplier thinks they should have. Will they pay for it?

The main object of Information Management is to increase the effectiveness of knowledge accumulated all over the world. Therefore, information management is becoming an increasingly important and responsible part of management.

In view of growing importance of information in research, development, industry and/or commerce, all organizations, namely for-profit corporations, non-profit enterprises or governmental agencies do all efforts in order to strengthen their position in information management.

Since the volume of data and information are increasing rapidly, availability and access to modern information services taking advantages of advanced technologies in data processing and communications become of critical importance for the efficiency of research and development activities, technology transfer, and for the competitiveness of manufacturing industries.

Thus, the importance of this activity is quite obvious. It would be irresponsible to ignore it.

The question of how to start or how to close up to already existing information systems can not be answered in general. Individual companies, countries and people should find their own way taking into account their own advantages and disadvantages. However, libraries could be filled with books and papers written
on the subject, number of databanks are advertising their offers,
the hardware and software supply are tremendous and universities
start courses on information management lasting not less then
eight semesters.

5.1.2 Terms of information management

World around us is full of data and on the other hand, most
people is in want of information. The person, who possesses
information, is the winner. The question is, however, how to get
being informed? How to find our way in the dark forest of data?
Of course, it is impossible to entrust all this procedure to
individual's skill only, even if he/she is a genius. We need a
well trained team to go along with the task and this group should
be backed with appropriate hardware and software facilities.

The task of this group is first to be aware of the proper
KNOWLEDGE ABOUT

WHOM, WHAT AND WHEN AN INFORMATION IS REQUIRED.

Secondly, which is not less important, is

TO MEET ALL THIS REQUIREMENTS.

What is left, that is but the matter of details.

This all is the information management, and the Very Important
Person is the

INFORMATION MANAGER.

5.1.3 Tasks of information managing

Tasks are as follows:
- collecting data,
- storing data,
- managing data,
- transforming data into information,
- forwarding information to the right place in the right time.

DATA COLLECTION is supported by libraries, local and/or
international databanks and last but not least by personal
contacts.

The role of LIBRARIES went through a dynamic change in the last
decade, as dealing with literature has become computerised
basically. However, I strongly believe and declare it whenever
possible, that personal contact with books and journals is a
necessity as long as human beings exist. Consequently, the
information manager should take the advantage of computerisation
by fast orientation in books and journals, and the library itself
should be a warm friendly and familiar place for people looking for new ideas.

DATABANKS are available in large quantities. One can reach contact with them through telecommunication networks or most conveniently and easily by CD-ROM technique. The most popular databanks are listed in Table 5.1-1 and some available CD-ROMs are given in Table 5.1-2. Databases are offered according to activities as it is given in Table 5.1-3. Beside databanks compiled by professionals, databases of our own are important tools as well. From data regarding to local circle of activities a privat databank or at least a database should be built.

<table>
<thead>
<tr>
<th>Databanks</th>
<th>Headquarters</th>
<th>Number of databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialog</td>
<td>Palo Alto (USA)</td>
<td>>380</td>
</tr>
<tr>
<td>(Dialog Information Services)</td>
<td></td>
<td>(260 million records)</td>
</tr>
<tr>
<td>Data-Star</td>
<td>Bern</td>
<td>>200</td>
</tr>
<tr>
<td>(Radio-Suisse)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STM</td>
<td>Karlsruhe</td>
<td>>100</td>
</tr>
<tr>
<td>(The Scientific and Technical)</td>
<td></td>
<td>(73 million citations and 14 million chemical structures or numeric records)</td>
</tr>
<tr>
<td>ORBIT</td>
<td>Santa Monica (USA)</td>
<td>>100</td>
</tr>
<tr>
<td>(System Development)</td>
<td></td>
<td>(75 million citations)</td>
</tr>
<tr>
<td>BRS</td>
<td>Latham (USA)</td>
<td>>150</td>
</tr>
<tr>
<td>Information Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qestel</td>
<td>Paris</td>
<td>>50</td>
</tr>
<tr>
<td>(Patent Family Service</td>
<td></td>
<td>(>60 million citations)</td>
</tr>
<tr>
<td>Patent Registry Service)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMDI</td>
<td>Koln</td>
<td>98</td>
</tr>
<tr>
<td>IMPADOC</td>
<td>Vienna</td>
<td>2</td>
</tr>
<tr>
<td>(Commission of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Communities)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHO</td>
<td>Luxemburg</td>
<td>23</td>
</tr>
<tr>
<td>Bertelsmann</td>
<td>Munchen</td>
<td>>130</td>
</tr>
<tr>
<td>Information Service GmbH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1-2
Possibilities of the most useful CD-ROMs

<table>
<thead>
<tr>
<th>Subjects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents</td>
</tr>
<tr>
<td>- European Patent Searching</td>
</tr>
<tr>
<td>- Espace</td>
</tr>
<tr>
<td>- Cassis/BIB</td>
</tr>
<tr>
<td>- Claims/Patents CD</td>
</tr>
<tr>
<td>Library</td>
</tr>
<tr>
<td>- The 1990 New Grolier Electronic Encyclopedia (MS-DOS Version)</td>
</tr>
<tr>
<td>- Gabler Wirtschafts-Lexikon (WI-LEX)</td>
</tr>
<tr>
<td>Science and technology</td>
</tr>
<tr>
<td>- CAB Abstracts on CD-ROM</td>
</tr>
<tr>
<td>- Fine Chemicals Database</td>
</tr>
<tr>
<td>- Standards Infodisk</td>
</tr>
<tr>
<td>Business</td>
</tr>
<tr>
<td>- Europages CD-ROM</td>
</tr>
<tr>
<td>- European Kompass on Disc</td>
</tr>
<tr>
<td>- Standard & Poor's Corporations</td>
</tr>
<tr>
<td>- F & S INDEX plus TEXT</td>
</tr>
</tbody>
</table>

PERSONAL CONTACT is one of the most valuable source supposing that data collected by that way become common and public, possible as a part of the local database. Knowledge stored in drovers is very common and very useless. In long run storing does not pay even for the person who appreciate his/her value by the amount of hidden informations.
Table 5.1-3
Activities in databases

<table>
<thead>
<tr>
<th>BUSINESS</th>
<th>SCIENCE</th>
<th>SOCIAL SCIENCES & HUMANITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business administr.</td>
<td>Agriculture</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Company of directories</td>
<td>Astronomy</td>
<td>Architecture</td>
</tr>
<tr>
<td>Company news</td>
<td>Biology</td>
<td>Communications</td>
</tr>
<tr>
<td>Financial</td>
<td>Chemistry</td>
<td>Demography</td>
</tr>
<tr>
<td>International Business Products</td>
<td>Computer science</td>
<td>Economics</td>
</tr>
<tr>
<td>Trade</td>
<td>Earth sciences</td>
<td>Fine arts</td>
</tr>
<tr>
<td></td>
<td>Electronics</td>
<td>History</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
<td>Information science</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>Linguistics</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Literature</td>
</tr>
<tr>
<td></td>
<td>Food science</td>
<td>Philosophy</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>Political science</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Psychology</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>Religion</td>
</tr>
<tr>
<td></td>
<td>Medicine</td>
<td>Sociology</td>
</tr>
<tr>
<td></td>
<td>Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEGAL & GOVERNMENT</th>
<th>REFERENCE</th>
<th>GENERAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business law</td>
<td>Catalogs</td>
<td>Consumer information</td>
</tr>
<tr>
<td>Copyright</td>
<td>Directories</td>
<td>Culture</td>
</tr>
<tr>
<td>Criminal law</td>
<td>Encyclopedias, handbooks</td>
<td>Home & garden</td>
</tr>
<tr>
<td>Demographics</td>
<td>Statistics</td>
<td>Leisure & recreation</td>
</tr>
<tr>
<td>Employment rights</td>
<td>Standard & specifications</td>
<td>People in the news</td>
</tr>
<tr>
<td>Patents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product liability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trademarks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEWS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide news</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US regional news</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspapers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newswires</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collected data are stored in COMPUTERS and we need computer PROGRAMS to be able to manage the stored data. Several data and text editing programs are available, however, among them ISIS is the most frequently used. The program is provided free of charge by UNESCO. In the Information Centre of HUNGALU Mini/Micro ISIS 2.3 version is used with full satisfaction. ISIS is a multilanguage system and popular not only for its low cost but because of the continuous improvements of the program and advising the users by UNESCO specialists. Today the program is applied by more that 5000 users in nearly 50 countries, from
Transforming data into information is the most difficult part of the whole procedure. It is common saying, that the way of making an atomic bomb is written down in the databases, the question is how to find it?

The problem in question should be understood, formulated and expressed with words and commands understandable for the computer. Beside adequate technical knowledge a great deal of skill and intelligence are needed to meet these requirements.

The best way to understand the problem and give an inside how to handle it, is to see an example.

5.1.4 An example: about alumina

In this case we would like to know everything written about alumina in databases, we can select the database. The index section of DIALOG shows us the offer in Table 5.1-4.

Table 5.1-4
Search in DIALOG

Welcome to DIALOG

DIALINDEX(tm)
(Copr. DIALOG Info.Ser.Inc.)

?set files allscience
? s alumina
Your SELECT statement is:
 s alumina

<table>
<thead>
<tr>
<th>Items</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>12000</td>
<td>1: INSPEC 2_69-91/9111B2</td>
</tr>
<tr>
<td>1660</td>
<td>5: BIOSIS PREVIEWS 69-91/SEP BA9209:BARRM4109</td>
</tr>
<tr>
<td>4161</td>
<td>6: NTIS_64-91/9111B2</td>
</tr>
<tr>
<td>15045</td>
<td>8: COMPENDEX PLUS_1970-1991/OCT</td>
</tr>
<tr>
<td>42</td>
<td>10: AGRICOLA_1979-91/OCT</td>
</tr>
<tr>
<td>550</td>
<td>14: ISMEC: MECHANICAL ENGINEERING_1973-91/AUG</td>
</tr>
<tr>
<td>5209</td>
<td>16: PTS PROMT_- 72-91/October 21</td>
</tr>
<tr>
<td>2087</td>
<td>18: F & S INDEX _ 1980-91/Oct, Week 3</td>
</tr>
<tr>
<td>3032</td>
<td>19: CHEM. INDUSTRY NOTES_1974-914142</td>
</tr>
<tr>
<td>44</td>
<td>28: OCEANIC ABSTRACTS _ 64-91/OCT</td>
</tr>
<tr>
<td>8</td>
<td>29: NET/GEOSTRABSTRACTS - 70-90/NOV</td>
</tr>
<tr>
<td>5037</td>
<td>32: METADEX_66-91/OCT</td>
</tr>
<tr>
<td>8399</td>
<td>33: WORLD ALUMINUM ABSTRACTS _ 68-91/OCT</td>
</tr>
<tr>
<td>1177</td>
<td>35: DISSERTATION ABSTRACTS ONLINE_1861-NOV 91</td>
</tr>
<tr>
<td>158</td>
<td>40: ENVIROLINE_70-91/SEP</td>
</tr>
</tbody>
</table>
Table 5.1-4b
Search in DIALOG

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
<td>POLLUTION ABSTRACTS _ 70-91/SEP</td>
</tr>
<tr>
<td>14</td>
<td>PHARMACEUTICAL NEWS INDEX _ 74-91/OCT, WEEK 4</td>
</tr>
<tr>
<td>97</td>
<td>AQUATIC SCIENCE ABSTRACTS _ 78-91/SEP</td>
</tr>
<tr>
<td>1292</td>
<td>APTIC _ 66-78/Oct</td>
</tr>
<tr>
<td>2</td>
<td>SPORT DATABASE _ 1977 - OCT 91</td>
</tr>
<tr>
<td>294</td>
<td>CAB ABSTRACTS _ 1984-91/SEP</td>
</tr>
<tr>
<td>610</td>
<td>FSTA _ 69-91/SEP</td>
</tr>
<tr>
<td>20</td>
<td>TSCA Chemical Substances Inventory (Jan. 1991)</td>
</tr>
<tr>
<td>344</td>
<td>CAB ABSTRACTS _ 1972-1983</td>
</tr>
<tr>
<td>341</td>
<td>GEOARCHIVE _ 74-91/AUG</td>
</tr>
<tr>
<td>11</td>
<td>CRIS USDA _ AUG 1991</td>
</tr>
<tr>
<td>500</td>
<td>SPIN _ 75-91/SEP</td>
</tr>
<tr>
<td>184</td>
<td>TRIS _ 70-91/JUN</td>
</tr>
<tr>
<td>305</td>
<td>SSIE CURRENT RESEARCH _ 78-82/FEB</td>
</tr>
<tr>
<td>239</td>
<td>WORLD TEXTILES _ 70-91/SEP</td>
</tr>
<tr>
<td>105</td>
<td>ENVIRONMENTAL BIBLIOGRAPHY _ 74-91/AUG</td>
</tr>
<tr>
<td>113</td>
<td>ENERGYLINE _ 70-91/SEP</td>
</tr>
<tr>
<td>4</td>
<td>SEDBASE _ SEP 1991</td>
</tr>
<tr>
<td>1174</td>
<td>EMBASE (EXCERPTA MEDICA) _ 74-91/ISS42</td>
</tr>
<tr>
<td>51</td>
<td>INTERNATIONAL PHARMACEUTICAL ABS. _ 70-91/SEP</td>
</tr>
<tr>
<td>293</td>
<td>LIFE SCIENCES COLLECTION _ 78-91/JUL</td>
</tr>
<tr>
<td>951</td>
<td>CONFERENCE PAPERS INDEX _ 73-91/NOV</td>
</tr>
<tr>
<td>22</td>
<td>FOODS ADLIBRA _ 74-91/AUG</td>
</tr>
<tr>
<td>27</td>
<td>PTS A/DM&T _ 82-91/OCT.22</td>
</tr>
<tr>
<td>78</td>
<td>MENTAL HEALTH ABSTRACTS _ 69-91/AUG</td>
</tr>
<tr>
<td>1240</td>
<td>GEOREF _ 1785-1991/JUL</td>
</tr>
<tr>
<td>108</td>
<td>IHS INTERNATIONAL STANDARDS AND SPECIFICATIONS_</td>
</tr>
<tr>
<td>459</td>
<td>FLUIDEX _ 73/90 - DEC</td>
</tr>
<tr>
<td>1386</td>
<td>F & S Indexes _ 1972 Thru 1978</td>
</tr>
<tr>
<td>21</td>
<td>AGRICOLA _ 70-78/Dec</td>
</tr>
<tr>
<td>28</td>
<td>STANDARDS & SPECIFICATIONS OCT91</td>
</tr>
<tr>
<td>282</td>
<td>WATER RESOURCES ABSTRACTS _ 68-91/NOV</td>
</tr>
<tr>
<td>872</td>
<td>Nonferrous Metals Abstracts_ 61-83/Dec</td>
</tr>
<tr>
<td>129</td>
<td>TEXTILE TECHNOLOGY DIGEST _ 1978-91/SEP</td>
</tr>
</tbody>
</table>

Examined 50 files
Table 5.1-4c
Search in DIALOG

<table>
<thead>
<tr>
<th>Number</th>
<th>Record Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>HEALTH PERIODICALS DATABASE_1976-91/WEEK 41</td>
</tr>
<tr>
<td>6</td>
<td>HEALTH PLANNING AND ADMINISTRATION - 1975-91/NOV</td>
</tr>
<tr>
<td>914</td>
<td>MEDLINE _ 66-91/DEC (9112W2)</td>
</tr>
<tr>
<td>1112</td>
<td>TOXLINE _ 1965-1991/OCT</td>
</tr>
<tr>
<td>18</td>
<td>BIOGENES_1976 - OCT. 15, 1991</td>
</tr>
<tr>
<td>104</td>
<td>Cancerlit_1963-91/Oct</td>
</tr>
<tr>
<td>42</td>
<td>SMOKING AND HEALTH _ 70-89/Dec</td>
</tr>
<tr>
<td>374</td>
<td>OCCUPATIONAL SAFETY & HEALTH (MIOSH)_73-91/SEPT</td>
</tr>
<tr>
<td>5</td>
<td>COFFEELINE(SM)_ 73-91/AUG</td>
</tr>
<tr>
<td>11</td>
<td>Chemical Regulations and Guidelines System - Nov 1982</td>
</tr>
<tr>
<td>2</td>
<td>AVERY ARCHITECTURE INDEX_1979-91</td>
</tr>
<tr>
<td>10</td>
<td>ARCHITECTURE DATABASE SEP 1991</td>
</tr>
<tr>
<td>3</td>
<td>ZOOLOGICAL RECORD_78-91 V.127 I.09</td>
</tr>
<tr>
<td>5</td>
<td>F-D-C REPORTS_1987-OCT. 14, 1991</td>
</tr>
<tr>
<td>2</td>
<td>HEALTH DEVICES ALERTS_77-91/OCT WK2</td>
</tr>
<tr>
<td>43</td>
<td>AGRIS INTERNATIONAL_74-91/JUN</td>
</tr>
<tr>
<td>2</td>
<td>NEWSEARCH WK=41, 10/18/91</td>
</tr>
<tr>
<td>3</td>
<td>TRADEMARKSCAN OC:10/08/91 AP:09/16/91</td>
</tr>
<tr>
<td>2</td>
<td>DRUG INFORMATION FULLTEXT - DEC 1990</td>
</tr>
<tr>
<td>51</td>
<td>AMERICAN MEN & WOMEN OF SCIENCE 17TH ED.</td>
</tr>
<tr>
<td>6</td>
<td>SUPERTECH _ 1973-1991/SEP</td>
</tr>
<tr>
<td>1</td>
<td>MATHSCI_59-91/OCT MR,CMP91:10;80-89 CIS</td>
</tr>
<tr>
<td>704</td>
<td>PAPERCHEM _ 67-91/DEC</td>
</tr>
<tr>
<td>88</td>
<td>ELECTRIC POWER DATABASE_72-91/OCT</td>
</tr>
<tr>
<td>5</td>
<td>CLAIMS/COMPOUND REGISTRY</td>
</tr>
<tr>
<td>49</td>
<td>WATERNET _ 71-91/SEP</td>
</tr>
<tr>
<td>2</td>
<td>PACKAGING SCIENCE & TECHNOLOGY ABSTRACTS_1991 OCT</td>
</tr>
<tr>
<td>43</td>
<td>API Energy Business News Index (APIBIZ)_75-91/Oct 17</td>
</tr>
<tr>
<td>17</td>
<td>Examined 100 files</td>
</tr>
<tr>
<td>78</td>
<td>FEDERAL RESEARCH IN PROGRESS_SEP 1991</td>
</tr>
<tr>
<td>3</td>
<td>DE HAEN DRUG DATA _ 1980-91</td>
</tr>
<tr>
<td>1246</td>
<td>MATERIALS BUSINESS FILE_85-91/OCT</td>
</tr>
<tr>
<td>255</td>
<td>Soviet Science & Technology</td>
</tr>
<tr>
<td>26</td>
<td>COMPUTER DATABASE_83-91/ISSUE40</td>
</tr>
<tr>
<td>206</td>
<td>BIOBUSINESS_1985-1991/OCT WEEK 4</td>
</tr>
<tr>
<td>2</td>
<td>BIOCOMMERCE ABS & DIRECTORY_81-91/SEP 30</td>
</tr>
<tr>
<td>488</td>
<td>GEOBASE_1980 - AUG 91</td>
</tr>
<tr>
<td>3079</td>
<td>ENGINEERED MATERIALS ABS_86-91/OCT</td>
</tr>
<tr>
<td>206</td>
<td>WORLD TRANSLATIONS INDEX_1984 - SEP 1991</td>
</tr>
<tr>
<td>680</td>
<td>Kirk-Othmer Encyc of Chem Technology</td>
</tr>
<tr>
<td>36</td>
<td>Chapman&Hall Chemical Database_11/89</td>
</tr>
<tr>
<td>14</td>
<td>MERCK INDEX ONLINE(*)m UD=9OS2</td>
</tr>
<tr>
<td>1068</td>
<td>ANALYTICAL ABSTRACTS ONLINE_1980-91/NOV</td>
</tr>
<tr>
<td>1446</td>
<td>CHEM ENG & BIOTECH ABSTRACTS_1971-91/OCT</td>
</tr>
</tbody>
</table>
Several databases write about alumina, for example, about market or price data or may be some miscellaneous technical information is hidden in local newspapers, however we should decide. Let us suppose, that technical details of production and the use of alumina for different purposes is the question of interest. Our selection is either World Aluminium Abstract or Chemical Abstract.
Starting with both, the result is frightening. Nearly 100 thousands of papers should be read to learn the answer. A search and the results are shown below:

Welcome to DIALOG

?b 33,399
File 33: WORLD ALUMINIUM ABSTRACTS 68-91/OCT
FILE 399: SEARCH1967-1991 UD=11514

?a alumina?
S1 90073 ALUMINA?

Next decision is, that we see only WAA and we deal only with alumina used for special purposes. Let's see, what about this? The expression "special alumina" is unknown in the world literature.

?a special(w)alumina
1 SPECIAL
76592 ALUMINA
S2 0 SPECIAL(W)ALUMINA

Our first question covered a too bright area and the second was not understood. Now we locate the questioning either on area of production or of using alumina. The bunch of hits is more friendly, however still to much to read.

?a alumina and production
76592 ALUMINA
176734 PRODUCTION
S3 7274 ALUMINA AND PRODUCTION

?a alumina and use
76592 ALUMINA
219024 USE
S4 2276 ALUMINA AND USE

Going further the news about the production by Bayer technology can be obtained.

?a alumina and bayer
76592 ALUMINA
2526 BAYER
S1 1892 ALUMINA AND BAYER

Hits could be decreased further adding new aspects of production as for example morphology or we could give time limitations.
To have some more ideas to limit data on the production of alumina see Table 5.1-5.

Table 5.1-5
Production of alumina

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Improvement of Bayer technology</td>
<td>- Surface treatment</td>
</tr>
<tr>
<td>- Bauxite with low modulus</td>
<td>- Sintering techniques</td>
</tr>
<tr>
<td>- Nepheline</td>
<td>- Carbonization</td>
</tr>
<tr>
<td>- Clays</td>
<td>- Calcination</td>
</tr>
<tr>
<td>- Alkali aluminate</td>
<td></td>
</tr>
<tr>
<td>- Aluminium chloride</td>
<td></td>
</tr>
<tr>
<td>- Alkoxide</td>
<td></td>
</tr>
<tr>
<td>- Aluminium sulphate</td>
<td>- Quality control</td>
</tr>
</tbody>
</table>

To have a look into the forest of the other question, namely the use of alumina for other than metallurgical purposes we select the use in ceramics. The results show that we should go further.

Developments in high strength ceramics is a very important question nowadays. Reading the offered 45 papers in literature is
not an impossible task anymore.

<table>
<thead>
<tr>
<th>S8 alumina and high(w)strength(w)ceramic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>76592 ALUMINA</td>
</tr>
<tr>
<td>612316 HIGH</td>
</tr>
<tr>
<td>128122 STRENGTH</td>
</tr>
<tr>
<td>205151 CERAMIC?</td>
</tr>
<tr>
<td>180 HIGH(W)STRENGTH(W)CERAMIC?</td>
</tr>
<tr>
<td>45 ALUMINA AND HIGH(W)STRENGTH(W)CERAMIC?</td>
</tr>
</tbody>
</table>

Of course, alumina could have been used in several more areas. A comprehensive overlook is given on Table 5.1-6.

Table 5.1-6
USE OF ALUMINA

<table>
<thead>
<tr>
<th>CERAMICS</th>
<th>FILLERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic and optoelectronic</td>
<td>plastic industry</td>
</tr>
<tr>
<td>- fiber optics</td>
<td>- building industry</td>
</tr>
<tr>
<td>- thin layer</td>
<td>- textile industry</td>
</tr>
<tr>
<td>- cosmetics</td>
<td>- chemical industry</td>
</tr>
<tr>
<td>- illumination</td>
<td>- (medicines)</td>
</tr>
<tr>
<td>High strength</td>
<td>- polishing agents</td>
</tr>
<tr>
<td>- solid electrolyte</td>
<td>- artificial marble</td>
</tr>
<tr>
<td>- electronic substrat</td>
<td></td>
</tr>
<tr>
<td>- cutting, grinding tools</td>
<td></td>
</tr>
<tr>
<td>- abrasives - optic (Lucalox)</td>
<td></td>
</tr>
<tr>
<td>- high alumina content sicas ceramics</td>
<td></td>
</tr>
<tr>
<td>- propants</td>
<td></td>
</tr>
<tr>
<td>Bioceramics</td>
<td></td>
</tr>
<tr>
<td>- Porous ceramics (filters)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATALYST, CATALYST CARRIER</th>
<th>INSULATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seavage treatment</td>
<td>- Refractories</td>
</tr>
<tr>
<td>Petroleum industry</td>
<td>- Radiation absorbing</td>
</tr>
<tr>
<td>Gas purification coatings</td>
<td>- Plasma sprayed layer</td>
</tr>
<tr>
<td></td>
<td>- Composites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYNTHETIC MINERALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolites</td>
</tr>
<tr>
<td>Semi-precious stones</td>
</tr>
</tbody>
</table>

The demonstrated procedure could be repeated in CA database and about 50-60% new hits could be observed.

More important, that patent information databanks INPADOC, HUNPADOC and DERWENT should be searched thoroughly.

In possession of all available data the information manager is
supposed to give reports as short as possible. Condensed and comprehensive tables are very welcome. Example is given in Table 5.1-7

<table>
<thead>
<tr>
<th>USE/ADVANTAGE</th>
<th>DESCRIPTION</th>
<th>PARTICLE PATENT</th>
<th>PRIORITY</th>
<th>SIZE</th>
<th>ASSIGNEE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light transmission of a light transmissive alumina sintered compact, which is used for luminescence bulbs such as high temp. Ha-lamps, can be improved.</td>
<td>The light transmission is improved by treating light transmissive alumina sintered compact at 1000-1450 deg.C in oxidising atm. (Pref. combined with steam flow).</td>
<td>SHOMA JP</td>
<td>DENKO 85255782</td>
<td>KK</td>
<td></td>
</tr>
<tr>
<td>Light transmissive aluminous tube having high diffusion transmissivity and improved strength is produced.</td>
<td>An aluminous tube which is prep'd. so as to have diffusion transmissivity of light higher than 95 %, mean crystalline particle size 20-40 microns and variance of particle size (i.e., ratio of the max. crystalline particle size) lower than than 4.0.</td>
<td></td>
<td>20-40 µ TOSHIBA JP</td>
<td>CERAMICS8599901</td>
<td>KK</td>
</tr>
<tr>
<td>In e.g. high pressure discharge lamps. Presence of Er provides a regular crystal size distribution and eliminates beta-aluminate structure.</td>
<td>Gas-tight sintered translucent Al₂O₃ having a density of at least 99.5 % contains at most 2000 ppm MgO (by wt.), pref. below 500 ppm MgO, and 20-200 ppm pref. 20-130 ppm Er as Er₂O₃. Article is formed by shaping an Al₂O₃ powder contg. an MgO cpd.; impregnating the shape with an Er soln., pref. Er acetyl acetonate in alcohol; and sintering in H₂ or a vacuum of 0.13 Pa max. at 1800 deg. C max.</td>
<td></td>
<td>PHILIPS NL 852567</td>
<td>GLOEILAMPEN</td>
<td>MV</td>
</tr>
</tbody>
</table>

Table 5.1-7b
Electronics and optoelectronics (cont)
The sinter tubes are used in high pressure gas discharge lamps. The sintered articles have the following claimed properties: average crystallite size 20-40 microns, surface roughness 0.1-1 (0.2) microns, mechanical strength at least 320 N/mm² and in-line light-transmission over 64 %. The tubes require no further processing; energy- and time consumption in sintering is small; smooth surfaces are obtained and the products are dimensionally stable.

Esp. in high intensity discharge lamp envelopes (claimed): Body has high optical transmission.}

Transparent sintered polycrystalline Al₂O₃ body has a major surface glaze-polished to reduce high spots without introducing low spots so optical transmission is increased and surface is free of contamination on removal of the glaze. Pref. polycrystalline Al₂O₃ body may contain up to 0.5 wt.% MgO; or consist of uniform equiaxed grains of Al₂O₃ contg. no more than 150 ppm Mg, less than 1 % pore vol. and ave. grain dia. 20-35 micron (26 micron); alternatively the body compsn. Al₂O₃, Mg and Zr and/or Hf, esp. (in wt.%): Mg 0.03-0.15, Hf 0.003-0.12 and Zr 0.002-0.07, each calculated as oxide. In a typical process, the glaze material comprises an alkali metal borate (other than Li borate) with alkali metal oxide to B oxide wt.% ratio of 1:2-4, deposited on the Al₂O₃ surface as a liq. suspn.
LIST OF FIRMS INVOLVED IN THE WORKSHOP
HUNGALU Group incorporates one bauxite prospecting company, one bauxite mine, three alumina plants, two smelters, two semi production and two finished products manufacturing plants, moreover it owns a machine construction factory for the aluminium industry and a trading company. They are listed below:

Bakonyi Bauxit Mines Ltd.
Tapolca, Hőseki ter 5.
H-8301 Tapolca P.O.B. 61
Telex: 032-225
Telefax: (0036)-87-12-813

Ajka Aluminiumindustrial Ltd.
Ajka,
H-8401, Ajka P.O.B. 45.
Telex: 032-234 or 032-366
Telefax: (0036)-88-11-634

Balassagyarmat Metal Working Ltd.
Balassagyarmat
H-2661, Balassagyarmat, P.O.B. 130
Telex: 028-2218

KÖFÉM Light Metal Works of Székesfehérvár Ltd.
Székesfehérvár, Verseci út 1-15
H-8005, Székesfehérvár, P.O.B. 1
Telex: 021-322 or 021-357
Telefax: (0036)-22-14-120

Tatabánya Aluminium Co. Ltd.
Tatabánya
H-2801, Tatabánya, P.O.B. 192
Telex: 027-319
Telefax: (0036)-34-11-789

MR. Robert Jeliňkó BSc, MSc, PhD.
Research Institute for Technical Chemistry of the Hungarian Academy of Sciences, Veszprém
Graduated at University of Chemical Engineering, Veszprém, Hungary in 1978. His special fields were chlorination of aluminium-oxide at high temperature and mobilizing and mixing of solid systems. He made a procedure to determine local concentration and rate of flowing solid systems. Recently he has been investigating new inorganic processes, use of zeolites and properties of intensive gas-solid/gas-liquid systems.

Mrs. Erzsébet Juhász, BSc
ALUTERV-FKI Ltd
Research Fellow

Mrs. Éva Kálmán, BSc, MSc, PhD.
ALUTERV-FKI Ltd.
Head of the Laboratory for Wet Chemistry and Ion-chromatography
Since 1975 she has been working at ALUTERV-FKI in the Materials Science Department. Her main activities are the investigation of...
Mr. PÉTER LUKÁCS, BSc, PhD, CSc
ALUTERV·FKI Ltd.
Head of Department for New Materials and Technologies

Graduated on metalphysics and powder metallurgy at the Kiev Technical University (Ukrania). His CSc dissertation work was on the influence of rare earth metaloxides on the behaviours of soft ferrites. Main fields of interest are plasma technologies, advanced ceramics and high purity metals.

Mrs. Eleonóra Molnár, BSc
ALUTERV·FKI Ltd.
Senior Process Engineer

Graduated at the University of Chemical Engineering, Veszprém, Hungary in 1972. She took part in the detailed engineering and process design works of the reconstruction of the digestion of Lauta Alumina Plant, GDR, and in Ajka Gallium Plant, 1985. She was involved in preparing various feasibility studies on different alumina plants, in energy conservation projects and in several studies for the improvement of the alumina production technology.

Mrs. Zsuzsanna Porkoláb, BSc, MSc,
ALUTERV·FKI Ltd.
Head of Economics Section
ALUTERV-FKI Ltd.

Hungalu Engineering and Development Centre (ALUTERV-FKI Ltd.) is a member company of the Hungalu Group (HUNGALU).

ALUTERV-FKI Ltd. is the research, development, engineering, contracting and intellectual product centre of the HUNGALU Group. The Institute members about 400 employees, near half of them with the highest qualification, and a considerable number of experts having more than one university or scientific degrees. Majority of the research workers, designers and sales experts has firm industrial background and experience, too.

ALUTERV-FKI Ltd. was established in 1976 by uniting two legal predecessors of great past, namely the Research Institute for Non-Ferrous Metals (acronym: FKI) founded in 1948 and the Design Company of the Aluminium Industry (acronym: ALUTERV) established in 1955.

Experts of ALUTERV-FKI are closely cooperating with the manufacturing companies of the parent company and with other research institutes in the non-ferrous metals industry. In possession of profound technological knowledge and experience gained through practice our Institute undertakes:

- research and investigation tasks,
- elaboration of feasibility studies for complete projects, selecting and elaborating process technologies including economic evaluation,
- engineering of new projects, modernization, updating and intensification of existing plants, and erection as main contractor cooperating with local or third country subcontractors,
- technical supervision,
- training of staff, start-up and commissioning the plant,
- long-term technical assistance,

in the following fields:

- prospecting of bauxite and other mineral resources,
- qualitative and quantitative analysis of explored mineral resources,
- bauxite and other mines,
- bauxite beneficiating plants,
- alumina plants, development of technologies and production facilities,
- plants for producing aluminium sulphate and special aluminium oxides,
- production and processing of by-products resulting from the alumina production,
- plants for artificial corundum (fused alumina),
- plants for aluminium semis and finished products,
- architectural light structures and civil engineering.

Research activity

In the well-equipped scientific laboratories of ALUTERV-FKI Ltd., the research and development activities covering all fields of the aluminium industry are carried out by highly qualified experts of international experience, who have gained acknowledgements in several countries of the world.

Organization

ALUTERV-FKI Ltd. is organized according to the verticality of the aluminium industry in order to meet all the requirements in the field of research, development, engineering and investment tasks. Our highly qualified experts grant for the quality of our work. These colleagues with a great number of scientific and postgraduate degrees have successfully proved itself in various jobs.

We should like to draw your kind attention to some outstanding topics in the field of alumina plants established in foreign countries, to the reconstruction and expansion works done in the Hungarian semis-fabrication plants and to the realizations in the field of aluminium ready-made products and structures. The works realized abroad were mainly organized by our Foreign Trading Division and by our Prime Contracting Division.

There are specified divisions not only for the research and technological tasks, but for the detailed engineering as well (civil eng. div., electrical and control div., various mechanical divisions).

A special organization serves for the Prime Contracting and for the Foreign Trade.
Ajka Aluminiumindustrial Co., Ltd.

The aluminium works set up in Ajka consist of different plants which are involved in a vertical aluminium industrial system.

Main producing units of the works are the following:

- alumina refinery 500,000 tpy capacity
- aluminium smelter 22,000 tpy capacity
- die-casting plant 5,000 tpy capacity
- various plants producing special products: gallium, zeolite, ground alumina hydrates.

The factory is based on local bauxite deposits and coal mines and situated near the Budapest-Graz railway and road.

The alumina plant operates by the classical Bayer-process. The bigger part of the product is metallurgical alumina, but it is produced for refractories and ceramics, too. Hydrates, zeolites and gallium are processed from aluminate liquor of the Bayer cycle.

Smelter and die-casting plant manufacture a smaller quantity of the alumina product. The rest of alumina and aluminium products are exported.

The direction of strategic development is determined by world economical position: producing products with high quality and low cost.

Changing of the market demand is recognized to produce individual, mainly non-metallurgical alumina products in smaller quantity.

HUNGAMOLA Ltd.

HUNGAMOLA Ltd. was founded by Ajka Aluminiumindustrial Co., Ltd. and ALUTERV-FKI Ltd. for producing ground fine products.
HUNGALU ALOXID (Almásfűzítő Alumina) Ltd.

The plant is affiliated to HUNGALU group. The 300,000 tons/year alumina production capacity is based on domestic bauxite by Bayer process. Beside metallurgical grade alumina the ALOXID Ltd. produces special aluminas for special purposes as well.

As a result of many years' research the following branches of special aluminas have been developed:

- ceramic aluminas
- abrasive and polishing aluminas
- gamma-aluminas
- adsorbent and catalyst carriers
- amorphous aluminium-hydroxide (gel)

The main types of these aluminas are available ground in air jet mill. This method of grinding makes possible breaking up the particles without contamination and they can achieve grain size under 6 um of the 95 percent of the material.

Efficiency of development and quality control are guaranteed by laboratories equipped with modern devices.

The plant offers cooperation to manufacturers and users in the realization of their developments connected to products on aluminium oxide and aluminium hydroxide basis.
Alumina and Electrocorundum Factory of Mosonmagyaróvár (MOTIM)

In Hungary mining of bauxite, raw material of alumina production was launched in 1925.

The installation works of Mosonmagyaróvár alumina factory were started 18th June, 1934. Its starting capacity was of 1000 tons/year of alumina-hydrate, later on, in 1950 expanded up to 35,000 tons/year.

The 1st of January, 1951 the Alundum factory operational since the last year only had also been attached to the alumina one, and in August the vanadium producing unit was put into service. Production of cast refractory materials was started 6 years later, in 1957.

Section for the production of artificial cryolith was ready in 1963, while the most recent section of the whole factory, the aluminum sulfate plant became operational in 1971.

One year later, in 1972 the extension works of the alumina factory were over, resulting in an overall capacity of 75,000 tons/year.

Meanwhile, development of the plants, the widening choice of products the factory offers made the MOTIM an important exporting company, which products are sold nearly in every country of the world.
Central Research and Design Institute for Silicate Industry

(Budapest, III. Bécsi út 126-128
H-1300 Budapest, P.O.B. 122
Telex: 22-5269, 22-4376)

The Central Research and Design Institute for Silicate Industry (hereinafter SZIKKTl) is the complex research-, development-, technical design- and direct contracting (engineering) organization of the Hungarian building material's industry. The fundamental organizational units of SZIKKTl are: Research Main Department, Design Main Department and Direct Contracting Main Department. Commissioned by Hungarian and foreign partners SZIKKTl displays research-, design- and direct contracting activity in the following fields:

- concrete industry
- cement-, lime- and asbestos cement industry
- stone, quarrying, gravel and clay digging and processing
- brick and tiles industry
- fine- and structural ceramics industry
- glass industry
- special ceramics
- heat-, sound- and water insulating materials
- organic building materials
- silicate chemistry
- power engineering (energetics)
- automatization
- environmental protection, dust collection technologies
- computer control technique
- maintenance and construction of side tracks
LIST OF CONTRIBUTORS
LIST OF CONTRIBUTORS
(in alphabetical order)

Mrs. Márta Altrichter, MSc.
ALUTERV-FKI Ltd.
Research Engineer

Completed her studies at University of Chemical Engineering, Veszprém in 1974. She worked for Almásfűzítő Alumina Plant from 1976 to 1984 as head of laboratory for special aluminas. She has been working for ALUTERV-FKI since 1984 where her main topics are as follows: Bayer precipitation, technological testing of bauxites, developing new technologies for special alumina production, application of different chemicals in the Bayer process.

Mr. György Baksa, BSc, MSc, PhD.
Hungalu Ajka Aluminiumindustrial Ltd.
General Manager

After finishing his studies he got his MSc degree on chemical engineering at University of Veszprém in 1968. Later on he took part in a postgraduate education at Budapest Technical University and got his second MSc degree on economical engineering in 1982. He has been working for HUNGALU AJKA ALUMINIUMINDUSTRIAL Ltd. since 1968. His special fields were the development of alumina production technology especially the lime chemistry of Bayer process and the precipitation of aluminium-trihydroxide. This latter was the subject of his dissertation for PhD.
Mr. Zoltán Balogh, BSc.
Hungalu Ajka Aluminiu mindustrial Ltd.
Head of Products' Development Department

graduated at University of Chemistry in Veszprém in 1980. He has been working for Hungalu Ajka Aluminiuindustrial Co., Ltd. since 1981. His special field has been the development of alumina technology.

Mr. György Báňvölgyi BSc, MSc.
ALUTERV-FKI Ltd.
Senior Process Engineer

Got MSc. degree at the University of Chemical Engineering, Veszprém, Hungary in 1972. He was involved in the optimisation of the process technology of the Hungarian alumina plants and took part in the elaboration of several relating Feasibility Studies.

Mrs. Magdalena Borsodi, BSc, MSc, PhD.
ALUTERV-FKI Ltd.
Research Fellow

Graduated at ELTE University, Budapest as a chemist. She has different tasks of researching, developing and data service in the AAS Laboratory of the Department. She is engaged in chemical and analytical examination of different materials, including determination of main and impurity components of bauxite, red mud, alumina, pure and alloyed aluminium metal.
Mrs. Ágnes Csánády, BSc, MSc, PhD, CSc.
ALUTERV-FKI Ltd.
Scientific Councillor

Graduated at ELTE University in chemistry. She is experienced in material science as well as in aluminium and aluminium based alloys, as in the morphology structure and composition of bauxites, ATH, and aluminium oxides. Recently her special fields are the surface reactions of bulk and thin film materials. Member of the board of the International Federation of Electronmicroscopic Societies and some other international and Hungarian Scientific Committees.

Miss Anna Csordás Tóth BSc, MSc, PhD.
ALUTERV-FKI Ltd.
Head of the Laboratory for Electron Microscopy

As physicist her main activities are the investigation of non-metallic materials, SEM and TEM, microanalysis and image analysis of particular materials. In 1990 she was elected secretary of the Hungarian Society on Electron Microscopy.

Mrs. Margarita Dimitrova-Lukács, BSc, PhD.
Central Research and Design Institute for Silicate Industry (SZIKKTI)
Senior Researcher

In 1969 graduated as engineer in powder metallurgy at the Kiev Technical University (Ukraina). She studied the influence of rare earth oxides on the magnetic and electrical properties of some soft and hard ferrites. She has been working as a senior researcher at the Special Ceramics Department (SZIKKTI) in the field of zirconia based advanced ceramics and high temperature ceramic superconductors. Field of interest: advanced ceramics.

* CSc. = Candidate of Sciences, special Hungarian scientific degree between PhD. and DSc.
Mr. Attila Farkas M.Sc.
ALUTERV-FKI Ltd.
Head of Instrumental Chemical Laboratory

Graduated at Budapest Technical University on Chemical Engineering Faculty in 1970. Since 1988 he has been working for the ALUTERV-FKI in Instrumental Laboratory. His tasks were here: analyses of slurries by ICP-OES technique, investigation of microwave digestion, the control of producing Standard Reference Materials from highly alloyed aluminium.

Mrs. Judit Fekete BSc.
ALUTERV-FKI Ltd.
Research Fellow

Graduated Heavy Industrial University, Miskolc, as metallurgist. Her main interesting fields are the morphology of different powders and surface chemistry. She is involved the development of ceramic powders.

Mrs. Krisztina Fodor, BSc, MSc.
Ajka Aluminiumindustrial Co., Ltd.

Graduated at Chemical University of Veszprém in 1978. She is interested in the instrumental material tests out of the analytical methods. She directs the research work as a group leader at the Laboratory of Ajka Aluminiumindustrial Co., Ltd.

Mrs. Mária Földvári, BSc.
Ajka Aluminiumindustrial Co., Ltd.
Mr. László Gillemot, BSc, MSc, PhD.
ALUTERV-FKI Ltd.
Head of Department for Material Science

Graduated at Technical University of Budapest, as mechanical engineer. His special fields are mechanical testing and forming of semis, and application of aluminium products. Acting as short term expert for UNIDO.

Mr. József György, BSc, MSc, PhD.
Szikkti,
Head of Department

He graduated for chemistry at ELTE TTK, Budapest. From 1965 on he has been fellow researcher with Szikkii. His area of activity has been the development of aluminium oxide basic materials in order to produce ceramics of predetermined properties.

Mrs. Éva Hidvégi, BSc, MSc, PhD.
ALUTERV-FKI Ltd.
Head of Information Centre

Mechanical engineer, received her PhD in 1970 in metallurgy and material testing at the Technical University of Budapest. As the organiser of the Information Centre, her present main field of interest is the collection and evaluation of technical and trading information.

Mr. Aladár Imre BSc, MSc, PhD, CSc
ALUTERV-FKI Ltd.
Head of Laboratory

Chemist, head of the Research Department of New Materials and Technologies. Main fields of activity: surface chemistry of products of the aluminium industry, production of vanadium chlorides and aluminium chloride, production of special alumina.
Mr. István E. Sajó, BSc.
ALUTERV-FKI Ltd.
Research Fellow

He graduated from the Science University of Budapest [ELTE] in 1973. As an X-ray crystallographer works in the Materials Science Department of ALUTERV-FKI Ltd. He is involved in the development of phase analytical methods.

Mrs. Judit Sasvári, BSc, PhD.
ALUTERV-FKI Ltd.
Head of Laboratory for X-ray diffraction

Physicist, she has been working in X-ray field. Her main activities are the investigation of poly- and single-crystal materials (qualitative and quantitative phase analysis of minerals, bauxites, red muds, high temperature superconductors etc.).

Mr. Károly Solymár, BSc, PhD.
ALUTERV-FKI Ltd.
Head of section of Alumina Technology

Mr. István Somogyi, BSc.
Ajka Aluminiumindustrial Co., Ltd.
Technical Specialist

Finished his studies at Chemical University of Veszprém in 1970 as a chemist engineer, since he has been working for Ajka Aluminiumindustrial Co., Ltd. He was the head of Ajka Gallium Plant for years.
Mr. István Somosi, BSc, MSc, PhD, CSc.
Ajka Aluminiumindustrial Co., Ltd.
Supreme Councillor

Has graduated at Natural Science Faculty of Kossuth Lajos University, Debrecen (Hungary) as a chemist engineer. He got PhD degree with "Study of features of the impurities at the recovery of gallium by electrolysis from aluminate liquor", and CSc degree with "Intensification of home production and refinement of gallium".

Mrs. Éva Szabados, BSc, MSc.
ALUTFRV-FKI Ltd.
Economic Councillor

Got M.Sc. degree at the Industrial Faculty of the University for Economics, Budapest, Hungary, in 1975 and a degree as specialist in finance in 1985. As analytical economist her job is to prepare economic and financial analyses for various investments in the Hungarian aluminium industry. She prepared the economic and financial calculations of various Feasibility Studies on alumina plants for foreign countries.

Mr. Bálint Szabó BSc, MSc
HUNGAMOLA Ltd.
Director

Mr. István Szabó, BSc, PhD, CSc.
Research Institute for Technical Chemistry of the Hungarian Academy of Sciences, Veszprém
Scientific leader of Dep. Chemical Processes

Graduated at University of Chemistry in Veszprém. His special field was the intensification of organic reactions. Subject of his CSc paper was the haloid-metallurgical processing of metal-oxides. His research areas are developing and intensification of inorganic technologies, gas-solid processes, haloid-metallurgy and production of zeolites and fillers.
Mr. Tibor Szalai, BSc.
Magyaróvár Alumina and Fused Alumina Mfg. Ltd.
Plant Unit Manager

Graduated for technology of inorganic chemistry at Veszprém University for Chemical Industry in 1964. Initially he has been engaged as research engineer in the Research laboratory. From 1972 on he has been taking care of the production of the vanadium pentoxide and the aluminium sulphate plant units as Chemical Plant Unit Manager.

Mr. Géza Szalay, BSc, MSc.
Ajka Aluminiumindustrial Co., Ltd.
Technical Director

Got his degree on chemical engineering at the Chemistry University of Veszprém and another degree on electrical engineering at Budapest Technical University. His special fields have been the mathematical modelling and the computerized process control of the alumina production and the aluminium electrolysis in Hungary. In his activity special importance is given to the improvement of the quality of alumina for metallurgical purposes and the development of the product based Al2O3 for non-metallurgical purposes.

Mrs. Mária Tóth, BSc, PhD.
HUNGALU ALOXID (Almasfuzito Alumina) Ltd.
Head of Research and Quality Control Department

Graduated in 1969 at Faculty of Natural Sciences of ELTE University, Budapest, as chemist. Employed as research chemist at Almasfuzito Alumina Plant since 1969. At present she works as leader of research and development activities of special aluminas. Leading member of the local organization of Hungarian Mining and Metallurgical Society (OMBKE)

Mrs. Mariann Tóth-Gyutai, BSc.
Ajka Aluminiumindustrial Co., Ltd.

Graduated at Dep. Chemical Technology of Veszprém University. Her special field was the production of special aluminium-hydroxides and gallium. Recently she deals with development of zeolite production and forming.
Mr. Ferenc Valló, BSc, MSc, PhD.
Ajka Aluminiumindustriál Co., Ltd.
Head of Technical and Innovation Dept.

Graduated at University of Chemistry in Veszprémm. He is leader of the company's R&D activity. His special fields are Bayer alumina technology, development of production technology of silica based products, mainly zeolites. He is member of several scientific societies.

Mr. János Vitéz, BSc, MSc, PhD.
Ajka Aluminiumindustriál Co., Ltd.
Head of Laboratories

Got his degree at Leuna-Meseburg Chemical Faculty of the Technische Hochschule für Chemie "Carl Schorlemmer" in 1965. He got PhD degree at Chemical University of Veszprémm with "Study of spectrometric testing results in aluminium industry". He is interested in material tests, production of high purity gallium.

Mr. József Zábráczki, BSc, PhD.
HUNGALU ALOXID (Almasfűzito Alumina) Ltd.
Chief Technical Councillor

Graduated in 1971 at Faculty of Natural Sciences of ELTE University, Budapest, as physicist. Formerly university assistant, later research fellow at ALUTERV-FKI and head of laboratory at Almasfűzito since 1984. Member and legal specialist of Hungarian Mining and Metallurgical Society (OMBKE) and Eotvos Physical Society (ELFT).

Mr. József Zöldi, BSc, PhD.
ALUTERV-FKI Ltd
Head of Alumina Laboratory

Completed his studies at the Budapest Eötvös Lóránd University (ELTE) as chemist. Main fields of research activity: decreasing of caustic soda losses in Bayer-process, removal of different impurities from Bayer-process, precipitation of coarse alumina hydrate, special alumina production, technological evaluation of bauxites.
ATTACHMENT

DETAILED PROGRAM AND TIMETABLE
OF
WORKSHOP
WORKSHOP
on
Co-products and By-products of
the Bayer Alumina Production
ALUTERV-FKI Ltd.

TIMETABLE

25. Nov 1991 Monday
8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 17.30)

8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 19.30)

27. Nov 1991 Wednesday
7.30 Start from the Hotel to MOTIM (return about 18.30)

8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 16.30)

29. Nov 1991 Friday
8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 16.30)

30. Nov 1991 Saturday
13.30 Sightseeing (start from the Hotel, return about 17.30)

1. Dec 1991 Sunday
9.00 Visit to Danube curve (all day excursion) (start from the Hotel, return about 18.00)

2. Dec 1991 Monday
8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 16.30)

3. Dec 1991 Tuesday
7.30 Start from the Hotel to AJKA Works (return about 18.30)

4. Dec 1991 Wednesday
8.00 Start from the Hotel to Research for Silicate Industry. (return about 18.30)

5. Dec 1991 Thursday
8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 16.30)

6. Dec 1991 Friday
8.30 Start from the Hotel to ALUTERV-FKI Ltd. (return about 16.00)
Workshop on Co-products and By-products of the Bayer Alumina Production
Budapest, Hungary, 25 November - 6 December 1991
ALUTERV-FKI Ltd.

Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Monday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Nov. 1991</td>
<td>9:00 - 9:45</td>
<td>Opening of the meeting
- Statements of the representatives of UNIDO
- Statements of the representatives of UNIDO Hungarian National Committee
- Statements of the representatives of HUNGALU Rt
- Statements of the representatives of ALUTERV-FKI Ltd.</td>
</tr>
<tr>
<td></td>
<td>10:00 - 12:00</td>
<td>Lectures
-main trends of the further development of the alumina production: geographical and product restructuring</td>
</tr>
<tr>
<td></td>
<td>12:00 - 14:00</td>
<td>Lunch brake</td>
</tr>
<tr>
<td></td>
<td>14:00 - 17:00</td>
<td>Lectures
- Production, use and market for co-products and by-products in connection with Bayer alumina production
- General overview of the techniques of quality control in the field of special products</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Tuesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Nov. 1991</td>
<td>9:00 - 12:00</td>
<td>Lectures
- Development and production of non-metallurgical grade aluminas in Hungary
- Ceramic aluminas and their characteristics
- Production of aluminium sulphate and vanadium pentoxide</td>
</tr>
<tr>
<td></td>
<td>12:00 - 13:00</td>
<td>Lunch brake</td>
</tr>
<tr>
<td></td>
<td>13:00 - 16:00</td>
<td>Lectures
- Plasma materials for ceramics
- Production of special aluminium-hydroxides and aluminas based on the Bayer cycle
- Consultation
- WELCOME party</td>
</tr>
<tr>
<td></td>
<td>17:00 - 19:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. Nov. 1991</td>
<td>7:30 - 18:00</td>
<td>Plant visit to MOTIM Works</td>
</tr>
</tbody>
</table>
9:00 - 12:00 Thursday
Lectures
Phase analysis of the transition aluminas
Major, minor and trace element analysis by chemical methods:
12:00 - 13:00 Lunch brake
13:00 - 16:00 Lectures
Major, minor and trace element analysis by chemical methods: (cont)
- X-ray Fluorescence Spectrometry
- Atomic Absorption Spectrometry
- Analytical spectroscopy
Consultation on material testing

9:00 - 12:00 Friday
Demonstration in laboratories
(X-ray, AAS, Information Centre)
Lunch brake
13:00 - 16:00 Demonstration in laboratories (cont.)
(ICP, Iotocromatograph+wet chemistry, test evaluation)

9:00 - 12:00 Monday
Lectures
Gallium recovery from the Bayer cycle.
Production of zeolite in Ajka
Production of aluminium trihydroxide based products at
the Ajka Aluminiumindustrial Co. Ltd
12:00 - 13:00 Lunch brake
13:00 - 15:00 Demonstration on test system of model grinding system
(grinding system, Technological Laboratories for Alumina
and Special Alumina Production)
15:00 - 16:00 Consultation on technologies

7:30 - 18:00 Tuesday
Plant visit to the Ajka Works
8:30 - 11:15
Wednesday
Visit to Engineering and Developing Centre for Silicate Industry
Lectures
Ceramic aluminas and their characteristics

11:45 - 12:30
Lunch brake

12:30 - 18:00
Plant visit to Alumina Plant of Almasfuzito

9:00 - 12:00
Thursday
Lectures
Some aspects of engineering in a development project: a case study
Surface analysis and morphological studies of special products

12:00 - 13:00
Lunch brake

13:00 - 16:00
Lecture
Porosity, grain size analysis and surface area determination.
Demonstration in laboratories
(SEM, Laboratory for Ceramics, particle size analysis)

9:00 - 11:00
Friday
Consultation

11:00 - 12:00
Closing session

12:00 - 15:00
Lunch