OCCASION

This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation.

DISCLAIMER

This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO.

FAIR USE POLICY

Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO.

CONTACT

Please contact publications@unido.org for further information concerning UNIDO publications.

For more information about UNIDO, please visit us at www.unido.org

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria
Tel: (+43-1) 26026-0 • www.unido.org • unido@unido.org
This document has been produced without formal editing.

VIRGINIA

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Based on the work of J.A. Hunter, O.J. Ouse, and I. Indurial Engineer

Programme

acting as executing agency for the United Nations Development

By the United Nations Industrial Development Organization,

Prepared for the Government of Somalia

Support to the Industry of Industry

Economic Development Enterprise

Somalia

SOMALIA DEMOCRATIC REPUBLIC

DP/301/81/012

PREPARED: THE DEPARTMENT OF INDUSTRY

PROJECT: IN

12950

June 1993
CONTENTS

1.0 INTRODUCTION AND ACKNOWLEDGMENT
2.0 ABSTRACT
3.0 CONCLUSION AND RECOMMENDATION
4.0 INDUSTRIAL ENGINEERING - THE GENERAL SITUATION
5.0 INDUSTRIAL ENGINEERING - IMPLEMENTATION
6.0 REPORT SERVICES TO THE MINISTRY OF INDUSTRY
7.0 ENGINEERING REPORTS
 7.1 SIAL SUGAR CO
 7.2 KISORTO MILK FACTORY
 7.3 UREA PRODUCTION UNIT
 7.4 COCA COLA FACTORY

8.0 APPENDICES

8.1 PRELIMINARY REPORT: I.E. PROJECT DE/301/01/013
8.2 TRAINING WORKSHOP: CIGARETTE AND MATCH FACTORY
8.3 MODEL PROPosals
8.4 OPERATIONAL AUDIT QUESTIONNAIRES
8.5 INDUSTRIAL ENGINEERING IMPLEMENTATION SCHEME 1983
1.0. **INTRODUCTION AND ACKNOWLEDGEMENT**

Introduction

The Project provided for one year Consultancy assignment to support the improvement of manufacturing productivity by contributing to the operational performance of a number of publicly owned manufacturing enterprises.

The duration of the authors stay in Somalia was from July 3rd, 1982 until June 12th, 1983. The location was primarily at the Ministry of Industry Offices in Mogadishu, Somalia but with frequent site work.

The requirements of the position are summarized thus:

"Carry out diagnostic and advisory consulting assignments in factories and enterprises relating to Industrial Engineering and all aspects of production management, with special emphasis on mechanical workshops at factories. Participate in operational review meetings. Carry out on-the-job training of counterpart personnel and conduct training courses."

Early in the assignment it became clear that His Excellency the Minister of Industry, the Director General of the Ministry of Industry and the Director of Public Enterprises had daily access to the service, and subsequently a significant portion of the time was absorbed in dealing with technical requests.

Review of previous work carried out which reasonably related to the Engineering assignment demonstrated a lack of depth. Apart from the previous work at Somalitec, the data was sketchy to a degree that new operational reviews of public sector enterprises was necessary before individual factory projects could be instituted to achieve this review.

10 Factories were selected for visit. Of these, five were then selected for a non-detailed "Operational Audit".

This audit entailed a review and appraisal of the effectiveness of factory operations and operating procedures. The questionnaires developed for this surveys are reproduced in the annex to this report.

From those surveys two factories were selected for intensive in-plant assistance. This final selection of these two factories was made jointly with staff of the Ministry. The Minister himself participated in the discussions and approved the selection of the following factories:

/...
(1) The Cigarette and Match Factory, Mogadishu.
(2) The Somaltek Textile Factory, Balad.

The next phase entailed the training of 2 selected counterparts in production analysis techniques.

In particular the training on activity sampling and work simplification procedures proved very beneficial as the implementation proceeded. The fourth phase entailed working with these counterparts in the identification of specific areas of need, and the design of systems to overcome the problems.

The fifth, and final phase constituted the training of factory personnel in the systems, and the implementation of systems on the shop floor. During the course of the work active trouble shooting of production problems took place.

Acknowledgements

The author wishes to thank Dr. A.R. James, The Project Manager and members of the U.N.I.C.O. Project DF/60H/01/013 for their support and assistance.

In particular the work of associate engineer F. Fredericksen and Counterpart Engineers Ali Mohamed Haktar and Sulaiman Abdullah Shama in the daily activities of the project is gratefully acknowledged.

Although it is not possible to acknowledge the assistance of all the members of the Ministry of Industry the support of Mr. Bana Mohammed Sayid Director of Public Relations and His Excellency the Minister of Industry, Major General Abdalla Mohammed Farid was very encouraging.
2.0. Abstract

This report reviews and details industrial and mechanical engineering service work carried out under UNIDO Project, DF/SCW/81/013 to strengthen the Ministry of Industry in the Somali Democratic Republic.

The Programme was developed and supervised by Mr. John Rutter, Eng. UNIDO from July 3rd 1982 until June 12th, 1983. The work is on-going.

The report indicates support over a broad spectrum of production problems was provided and ranged from trouble shooting in factories to technical advice and assistance to the Ministry.

Substantive reviews of the situations being faced by the Timah sugar complex at Jowhar, and the new Urea Production facility at Gozirra are included.

The preventive maintenance work at the Cigarette and Match factory in Mogadishu and the textile factory at Balad are described.

The report concludes that Somalia is experiencing acute problems of engineering, organizational, financial and management nature to an extent that implementation of systems engineering is handicapped.

Continuation of the work of this UNIDO Project is recommended. Strengthening of the Engineering Consulting capability of the Ministry of Industry is also recommended.

Three specific initiatives to enhance the effectiveness of future support work to improve manufacturing efficiency are recommended.
3.0. Conclusions and Recommendations

The essential nature of the Industrial Engineering component of UNIDO's Project to strengthen the Ministry of Industry DF/SCH/81/013 is to transfer appropriate technology of a kind common in industrialized nations, to a nation with a weak and underdeveloped manufacturing sector.

Somalia is ill prepared for such a transfer at this stage of its development. It suffers from an acute shortage of management and personnel skilled in industrial management and engineering.

This condition is worsened by the existence of an economic climate characterized by constraints and scarcity. In its eagerness to improve, Somalia's industrial sector has attempted quantum leaps in the acquisition of technology, and because of this examples of inappropriate project selection and poor design make the problems of productivity improvement more acute.

Problems of raw, semi finished and essential production supplies exist. The difficulty of foreign exchange and capital finance acquisition contributes to the difficulty. To this must be added an institutional infrastructure not yet fully developed. So much so that at times complicated and sometimes obscure reporting relationships between the Ministries, the factory General Managers and the manufacturing units inhibit decision making.

At the factory level where most of this project's work took place five problems are common:

1. Management and Control systems are inadequate.
2. Skilled and experienced personnel are in short supply.
3. Production equipment is too often obsolete and poorly maintained.
4. The supply of spares and support services is inadequate.
5. A lack of market knowledge exists.

It became clear that the enterprizes themselves are in most cases prepared to make changes once they are aware of the opportunities in
the transfer of the appropriate technology.

However the failure of so many factories to draw up a sufficiently long-term strategy is a great handicap. The aim of such strategy should be to set up within the enterprise, conditions for continuous rather than sporadic productivity improvement.

Recommendations

Technological Services Unit

1. We suggested that the Ministry of Industry builds on the work of this project by considering a department for the transfer of technology. The department would have as its main responsibilities:
 a) Evaluation and preparation of technology
 b) The adaption of technology
 c) The guidance of the training of users of the transferred technology
 d) A market research capability

 Whatever route the Ministry adopts, better coordination of the support presently provided is warranted. For industrial engineering to take hold more needs to be done to prepare for such technical assistance. The chance for implementation is greatly improved when the host factories organization is sound, enough skills are at hand and management support is forthcoming.

2. An Organizational Improvement Study

 Productivity improvement depends on sound organization and effective management.

 If the factory organization is not correct implementation is handicapped.

 In Somalia, because of this, the work of previous experts has yet to be effective because the organizational structure cannot accommodate the recommendations. In the two factories on which this project concentrated too much time was consumed in redesigning the organization to adopt the new technology. For example at the Somalitex Textile factory, because the engineering functions were split between two equal but separate managers, the Preventive Maintenance Programme could not be implemented in a way in...
which it could function smoothly under one responsibility centre.

As a consequence time was consumed in selling the idea of this change to management, to engineering personnel and to the Ministries. An Organizational Improvement study is proposed. A look at the functional organisation of all the public enterprises is needed. The objective would be to bring about a better degree of Standardization of the organisation structure, position classifications and job descriptions.

The present confusion makes staff transfers difficult and work simplification and standard procedures impossible to readily apply in more than one factory at a time.

2. A Technical Training Needs Inventory

The lack of trained factory personnel is perhaps the single greatest inhibitor to rapid production improvement. In particular, better trades training is needed, and the present skill level of the majority of Mechanics, electricians etc is not adequate. It has had to run basic training courses to upgrade mechanics to enable them to carry out diagnostic and repair work on equipment covered in the Preventive Maintenance Scheme.

The survey proposed would therefore pinpoint the technical skills by person and their level of skill, at each factory. It would determine the training needs for the foreseeable future by factory. This data is fundamental to introducing more direct and specific training activities as necessary to supply Somalia's manufacturing skills requirements.

4.0... INDUSTRIAL AND TECHNICAL ENGINEERING - THE GENERAL SITUATION

4.1. DATA BASE

A review of Industrial productivity on a industry scale, even with the relatively small public manufacturing sector found in Somalia was beyond the scope of the Industrial Engineering Project DE/SCM/01/013. However, determination of the casual relationships between productivity and inputs industry wide is recommended. By tracing the pattern of events officials can link the various performance criteria, with both controllable and uncontrollable variables in the system, so that conclusions can be drawn about the effectiveness or otherwise of Ministerial and Managerial decisions as they relate to productivity. A start on the development of the necessary data base has commenced with the design and introduction of the Uniform Reporting System (URS) by UNDC Project DE/SCM/01/013. Until the URS is effective however difficulties in obtaining interpreting and extrapolating data in a meaningful manner will be experienced.

As expected data has been collected during the course of this work and the other parts of Project DE/SCM/01/013 will increasingly accumulate useful data. Mention should be made of the efforts of the Project to institute a Universal Reporting System in the factories, in particular the work of Mr. S. Neerani P.C.A. will bear fruit but it will require several years more of sustained effort for a reasonable data base to accumulate and a feed back system to operate smoothly.

4.2. Production Elements

The initial visits revealed a number of problems. Of interest was the discovery of a degree of commonality and correlation between the problems from plant to plant, and even industrial sector to industrial sector.

Production input-output

The influence of the product on product or efficiency is always a significant one. Both fabrication, as found in textiles production, and in process production as is found in sugar cane refining have unit costs of manufacture influenced through line balancing a much neglected and misunderstood technique in Somalia.
Improved use of raw materials and plant through improved supply
and the conversion of them into efficient products and by-products
manufacturing would also beneficially affect manufacturing costs.

The level of interest expressed by a number of managers in
improved material utilization and in moving out slow-moving inventories of
materials or semi-finished goods indicated that the possibility for lower
carrying costs exist. A review of inventory levels will lead to planned
reductions without loss of production being incurred and the introduction
of planned stock levels and of economic order quantities seems promising.

4.3 Organisation and Work Methods.

Layout

This element is so often symptomatic of inefficiency. We found
space utilization in general was poor, particularly so in storage
areas. There is much evidence of back-tracking of work-in-progress and
confused material and manufacturing supply deliveries.

Congestion, poor lighting, poor ventilation and bad housekeeping
was frequently observed.

4.4 Materials Handling

Improvements are possible but have capital cost implications. There
is certainly too much manual handling, and this is further complicated by
hazard and disorderly storage practices.

4.5 Maintenance

Maintenance procedures and practices have been identified as a key
area of attention in this particular project.

There should be installed at each factory:

a) Establishment of a sound inspection schedule.

b) Introduction of machinery maintenance records on key
individuals of plant and equipment.

c) Development of a complete inventory of small tools and
equipment used in repair and maintenance.

d) Introduction of a Preventive maintenance scheme where
justified.

...
a) Development of cost estimates for key repairs and maintenance.

f) Skill upgrading of mechanics and their assistants.

In some instances, major planned overhaul programmes are required. Planning and detailed scheduling, and spare availability, and similar logistics should be put into place in advance of shutdown for such major works.

4.6 Job and Job Methods.

Evidence exists of poor work practices. Observations indicate that problems exist in all the enterprises visited. Most Somali production operations are quite elementary and the degree of mechanization and automation in low, a factor however which emphasizes the need for sound work practices.

Random sampling indicated that most machine-paced production lines are experiencing excessive delays, with an unusually high incidence of unit-suit-for-work delays and breakdowns.

In relation to this particular problem considerable scope appears to exist for the adoption of performance standards. Such standards will be quite loose, and initially improved work methods will "define" be required.

Performance standards, for introduced, should materially assist in the determination and control of labour and material costs. It is probable that for the next 2 or 3 years industrial engineering work will be limited to observing work performed and measuring time by a stop watch. The adoption of predetermined motion time standards (PMTS) may be applicable in some manufacture in the course but it is not a priority.

4.7 Production Planning and Inventory Control.

Problems of both inadequate, and no production planning have been noted and to a degree affects all concerns. Scheduling is capable of introduction in most plants. In the case of the processing Factories application of PMTS balancing techniques would be useful.

Inventory control needs improvement. There is little or no ordering strategy in most concerns, and no pre-determination of economic order quantity exists.
It was noted that even the petroleum refinery, an essential and strategic resource, although having a "fire control stock system" did not establish practical levels and had, as a result, ceased production at times because of absence of critical spares. The uncertainty of source of supply and reliable transportation, the shortage of foreign exchange, and the times for letters of credit to be issued indicates that review of the level and type of buffer stocks should be pursued more vigorously.

4.5. Human Aspects

No discussion of productivity problems can be complete without comment on the human element.

In general, and considering the stage of industrial development, physical working conditions are fair; however there are several factories which should be cleaned up. In nearly all factories safety acts are neglected. The establishment and practice of recording and analyzing industrial accidents is strongly recommended. Sanitation facilities, sanitation facilities and room etc. are usually inadequate.

Little or no attention appears to have been given to the improvement of job satisfaction and working conditions, facilities, transportation and recreation. It is regarded as an attempt to heighten management awareness of the relationship of productivity to these factors is recommended.

The need for training is recognized throughout the public sector, and indeed some factories have a training component. Unfortunately there are no instructors of trade skills. This results in very poor plant engineering. As an outgrowth of this training, most factories have moved into giving courses of a general nature, such as general education, English language training etc. whilst this is not criticized it is fairly obvious that these efforts have no direct relationship to production line efficiency.

The exposure of Somalian management to industrialized nations' work practices is still very inadequate. Major weakness is apparent at the lower managerial level here. The exposure of production personnel to industrial training applications in western industrialized nations could also have very beneficial spin-off effects.
4.9 General conclusions

In all public enterprises productivity is drastically lowered by down time. A weight average for the 2 cotton and latex factories indicated down time of 35.0% of available machine time. For Somaliland down time averaged 50.0%. The major cause of this high level of non-productive time is "breakdown." The next most significant factor is "wait for work".

The former is related to the lack of space, tools and materials, to the latter, "wait for work," relates to "stock-outs" mainly the result of poor planning and control of the logistics of production.

These situations are in general attributable to Somaliland's dire shortage of foreign exchange and credit facilities, and occasionally, a lack of local currency in the less现代 enterprises. However, we found that in most cases the situation was primarily very poor planning and by low skills at both levels in the organization. There is an absence of systematic efforts to improve production activities. In most enterprises management appear only concerned with preserving the "Status Quo", wherein as long as things don't worsen too much, the situation is acceptable.

Management in general do not appear to realize the impact that a balanced production program based on pre-planned well researched Sales requirements has on production costs.

Although S.I.D.E.I. (Somali Institute of Industrial Development and Improvement) Inc., in conjunction with I.I.D.C. gave courses in Industrial Management, in particular in Production, " and Control for a number of years it is training has not yet become effectively utilized at the senior / middle management levels in factories. Consequently there is at best a feeble and rudimentary Production Planning and Control activity. The majority of factories do not even have the production situations necessary to minimize inefficiencies. Although the level of factory operations appears to depend on some factors outside of the control of management the absence of production planning and control can only lead to greater inefficiencies, lower quality and higher costs.

/...
In particular this project with its commitment to mechanical maintenance was affected by a very low level of skill among mechanics, fitters, and electricians, and service personnel.

Dealing concerned over this situation and its deplorable affect on maintenance, he ran a series of tests at the factories and discovered that a high level of "trained" personnel were incompetent as journeymen/trademen.

At the factory level productivity can be most improved in the short term by increased attention to:

- Planning and Control
- Skill training.

Productivity is also handicapped by a lack of knowledge among management and the Ministry of Industry is not yet playing a fully supportive role in the transfer of technology. Its range of services to public enterprises is undoubtedly improving and the Project DC/SC/31/013 is playing its part to strengthen the services, but, the Ministry is still inadequate in the provision of technical and Industrial Management Services to public companies.

At present the Ministry has too few trained Engineers/Accountants/Marketing Consultants to be of any significant consulting impact.
5.0. **Industrial Engineering Implementation.**

5.1. **The Work Programme.**

The following work has completed:

1. 10 Factory Production Survey.
2. 3 Factories received a detailed Production Engineering Review (Refer Operational Audit Questionnaires – Appendix 8.4)
3. Development of a rehabilitation plan for SIAI Sugar Co. at Jowhar.

This included discussions with the following authorities:
- SIAI Management
- The Ministry of Planning
- The Ministry of Agriculture
- The Ministry of Industry
- G.T.Z.
- K.F.I. Germany
- U.S.A.I.D.
- P.A.C.
- Various Somalian Agencies.

A report was published (Refer Section 6.1 of the...)

4. Assistance with the National Conference on Industrial Development and Management.
5. Assessment and assistance to annual major overhaul at SIAI Sugar Co. Jowhar.
6. Assessment of Engineering problems at Somaltes which led to the re-organisation of its engineering functions.
7. Assessment of engineering problems at the Cigarette and Match Factory, resulting in an approved and implemented organisational restructuring.
8. Development and implementation of an operational planned maintenance programme at the Cigarette and Match Factory.
9. Completion of a 40-hour maintenance inspection, procedures and mechanical and electrical inspection techniques training for 10 site mechanics employed at the Cigarette and Match Factory.

/...
10. Training of the Technical Manager in management of the Maintenance system.

11. Seminar to management concerning preventive maintenance in practice at the Cigarette and Match Factory.

12. Review of new equipment, proposals involving a capital budget of U.S. $ 2.6 million for cigarette making and packing machinery and spaces. (Refer Appendix 8.3 to this report)

14. As in all factory assignments, trouble shooting services were continuous. We dealt with lubrication difficulties, mechanical/ electrical failures, adjustments and timing, operator training, material handling and storage problems, tool design, maintenance work practices and quality control.

17. Report dealing with the Technical Analysis and Economic outlook for a new 45,000 Tons / annum plant for the production of urea using heavy fuel oil as feedstock. (Refer Section 6.3 of this report).

18. Provision of Consulting engineering services to the Ministry in checking the mechanical correlation certification of the 70/70 Million dollar BAK facility. This work was ongoing for 14 months. (Refer Section 6.3 of this report).

19. Completed training in Industrial / Production Engineering of 2 counterparts. These engineers are now working with minimal supervision in providing technical Consultative Services to Public Sector Factories.

21. Completion of a 40 hour maintenance instruction on procedures and mechanical and electrical inspection techniques training for 10 mechanics employed at Sonalax.

22. Training of Maintenance Engineer in Management of the Maintenance system.

23. Work in checking technical specifications of major items of equipment in and custom made for a being manufactured overseas for the S.I. A.G. to and the Ministry of Industry.

24. Design and specifying of equipment and machine tools for an in-house continuous training and upgrading workshop at the Cigarette and Match Factory. (Ref. Appendix 8.3. This report.)

25. Development of a job description respectful to the position of Chief Inspector at this facility.

5.2 Notes on Preventive Maintenance Systems.

Installed at the Cigarette and Match Factory and Sonalax Textiles.

From the investigation and subsequent data analysis it was observed that the greatest single cause of low plant productivity was mechanical or electrical breakdowns. It was therefore decided that the industrial engineering would have most impact by attacking the problem of down-time. A reduction in breakdown time was to be achieved by minimizing unplanned stoppages caused by mechanical/electrical failures. The method chosen was to design and implement a programme at each of the factories. It was intended to help as much of a common approach as possible, although it was recognized that some individual situations would call for some customization of the system between factories. Our approach therefore was to design the system, train the factory personnel, and, supervise the implementation and operation of systematic engineering inspection and maintenance at each factory in a manner in which the factory staff would run the programme, but with technical advice and assistance provided on a specified time allocation basis by the trained engineers counterparts of DC/SM/91/013.

To split the design, training and implementation stages between the
two factories in order to keep it as practical as possible.

Each Factory received a 3 months full time plan which dealt
solely with their problems. e.g. January, February, March, 1963
at the Cigarette and Match Factory, and April, May and June, 1963,
at Somalux Textiles.

To drive the implementation still further we located a trained
counterpart engineer at each factory on a full-time basis for 6
months. It is anticipated that at the conclusion of this the
systems will be so ingrained in the operational environment of the
factory that it could continue to exist as a visible system entirely
operated by Somaliland nationals after the specialists had departed.

During our tours we found the level of engineering knowledge to be
much lower than anyone expected, and consequently our training
component was increased almost 3 fold over what was originally
contemplated. However, to our great success, we have, with
factory management, introduced and have operating a preventive
maintenance programme for 60 pieces of equipment at the factories.

Their mechanics and their assistants have received practical on-the
job training and this work is now being extended. A reasonable
expectation is to reduce down time by 20% which on present costing
could result in a saving of 7½ million shillings in any one
year of full cover at the O.W.I. Factory.

Savings at Somalux could reach 6.0 million Shillings annually.

The O.W.I. Factory has agreed to set up a training workshop for
the improvement of trade skills at the mechanic and assistant
level. A review of their existing plant was carried out relevant to a training
and new machine tools, cutting tools, hand tools
and workshop material specific. Quotations have been received
from a machine tool / workshop equipment suppliers. A position
description has been prepared for a workshop instructor and
discussions on funding this concept are now underway.

Thus our training could fully 21 mechanics and assistants were trained
in Preventive Maintenance at the Cigarette & Match Factory, and 15
more at Somalux.
6.0 SUPPORT SERVICES TO THE MINISTRY OF INDUSTRY

6.0 During the progress of the assignment an increasing amount of professional time was taken up in dealing with technical enquiries for Ministry officials. As the knowledge of the Service spread officials would appear with blue prints for analysis, specifications for explanation and even pieces of equipment or plant on which a problem was being experienced.

The SNAI Sugar Factory at Jowhar is being rehabilitated and DE/SOH/81/013 provided an in-house technical service dealing with requests from suppliers, requests from management and requests from Government officials responsible for ordering, spares and other equipment.

Late in the assignment 2 man months was consumed in answer to a request of His Excellency the Minister of Industry that a "State of completion" review be made of the Project to build and commission a ISO - H T 3 D Frilled Urea Production plant at Genira Somalia.

The conclusion that must be drawn from this astonishing demand is that there is an obvious and real need for an Industrial Engineering office to be situated at the Ministry of Industry on a permanent basis.
7.1. SUAI SUGAR COMPANY

A production and Technical Review

and a plan for its rehabilitation
1. INTRODUCTION.

As part of an examination of public enterprises in Somalia undertaken in 1982 the production related operations of SHI (Johar Sugar Estate) were reviewed.

The work, part of the UNIDO Project BI/80/31/013 to strengthen the Somali Ministry of Industry, was intended to determine where industrial engineering services would be most effective given the environment existing in the manufacturing plants.

The Survey at SHI, and reported herein, concludes that the problems at SHI are so fundamental and far reaching that they cannot be resolved by the provision of the short term small industrial engineering effort currently available through this project.

The far reaching problems may be appreciated by the following synopsis.

1. The sugar estate has at present a gross area of 10,000 ha of cane fields of which about 5,000 ha are cultivable. A further 1,500 ha of these are however out of use because of high soil salinity.
2. Overall yields have fallen from 59 tons/ha in 1971 to 34 tonnes / ha in 1982.
3. In 1971, 460,000 tonnes of cane was harvested. In 1981 150,000 tonnes only were harvested.
4. In 1971 sugar production was 47,000 tonnes. In 1981 12,000 tonnes only was produced.
5. The cane h.v. escalated from 3,437/- per tonne in 1980 to an estimated 10,178/- per tonne in 1983.

No single problem can be isolated as the root cause of this continuing decline. It is a complex and complicated condition which we believe needs a well thought out, well funded, well managed strategy to improve.

The report reviews certain of the operational problems and suggests a "strategy" to deal with the decline.

/...
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

1. SAI at Jowhar is in a critical and worsening condition.
2. The plantation however is capable of profitable operation.
3. An immediate assistance program is required.
4. We recommend immediate managerial and technical personnel be provided along with a budget of about $5,000,000 U.S. to cover a 2 year period commencing in January 1983. We also recommend planning and study commence for a rehabilitation program through to 1990 with a preliminary budget of about U.S.$15,000,000.

Conclusions

We have concluded that the company is in a condition of continuing deterioration which unless arrested will lead to its eventual collapse. In the demonstration made in this report, we believe that the general condition is such that the application of any single assistance measure, such as the provision of some capital or a technical expert will at best be of marginal help and most likely will have little or no impact on the company.

A fundamental weakness is observed in the absence of strategy formulation and the inability to achieve any related coordinated and effective action. It is not unusual to discover in any enterprise that a gap exists between strategy formulation and action, but at SAI there is a total void. There is no recognizable plan or strategy to pull the company around, nor is there the skills and resources to achieve any recognizable implementation effort should a strategy be developed.

Such finding clearly point to the lack of experienced, competent management. We acknowledge that there are, at Jowhar, competent individuals, unfortunately they are too few to enable them to be effective, and gaps in many managerial / technical positions renders any action that they take largely ineffective. We suspect that recognition of the failing of senior management at SAI over the past 10 years has been somewhat obscured by the impact of national scale problems such as delays in opening opening Letters of Credit and the "all pervasive" hard currency problem. SAI, however is clearly ineffective in almost all areas.
The decline in agricultural productivity has had the greatest single impact on the rate of decline, and efforts to preserve good yielding cane land, to halt the yield decline on average to poor cane lands and the necessity to commence reclamation of abandoned lands have, as yet not been adequate.

Harvesting and transportation practices are grossly inefficient, and lead to significant losses of cane and sugar.

Hand harvesting continues to be significant at Jouler and with the available cutting personnel currently reduced to under 20% of the required number inefficient cane harvesting remains a major problem.

To summarize the shortcomings in the agricultural area as:

1. Poor Agricultural Management practices.
2. Deteriorating soil productivity.
3. Poor equipment utilization
4. Sub optimal harvesting practices

Factory operations present another aspect in obvious decline. The key problems are apparent in firstly, the relatively low extraction of sugar from available cane, and secondly, the relatively high moisture content of beetsauce. Both of these can be traced to mechanical inefficiencies arising from inefficient mill process engineering.

Efficient steam generation is essential in economic sugar refining yet Sugar has no water treatment facilities for boiler feed water and practically no working instrumentation to necessary to enable the performance of a steam generation and power generation equipment to be monitored and controlled.

Other critical aspects are cane yard inefficiencies, the negative impact of lack of spaces and supplies, and the lack of trained and skilled personnel.

It is our conclusion that to varying degrees all of these problems developed and exist because of under skilled personnel at most levels in the organization. The lack of knowledge and experience at the General Manager level is however the greatest single stumbling block to improvement. To demonstrate this inadequacy we compared actual general management activity with the standard control considered essential
in maintaining a well-run enterprise. The lack of achievement of the
indicates the weakness in general management at this time:

<table>
<thead>
<tr>
<th>Required</th>
<th>Actual Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The company policy and objectives understood, agreed and in writing</td>
<td>No</td>
</tr>
<tr>
<td>2. The setting of key managerial objectives with appropriate responsibility centre managers</td>
<td>No</td>
</tr>
<tr>
<td>3. The holding of regularly scheduled, working management meetings</td>
<td>No</td>
</tr>
<tr>
<td>4. The involvement of factory and field management with the development of budgets</td>
<td>No</td>
</tr>
<tr>
<td>5. Production Planning meetings</td>
<td>No</td>
</tr>
<tr>
<td>6. Cost control system in place and in use</td>
<td>No</td>
</tr>
<tr>
<td>7. Adequate technical and job training for personnel</td>
<td>No</td>
</tr>
<tr>
<td>8. Use of standards for control persons</td>
<td>No</td>
</tr>
<tr>
<td>9. Distribution of production results among all management and technical personnel</td>
<td>No</td>
</tr>
<tr>
<td>10. The identification of future personnel needs and a recruitment and promotion plan</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendations

The urgency of the situation requires that priority planning of a
response plan for EIM commence immediately. Such a plan, the elements of
which we are only beginning, requires skill and authoritative direction
and leadership.

We recommend that a project planning committee be formed within the
Ministry of Industry to consider policy formulation, resource allocation
and operational planning. This Committee would report to the
Minister of Industry.

It is not unlikely that any donor providing financial support
to the project will wish to be assured of the probability of financial
viability it must be recognized that it is unlikely that the enterprise can sustain its present losses until a detailed feasibility study is carried out. With this in mind we propose consideration of a phased programme designed along the following lines. The strategy would be to provide immediate managerial, technical and financial support, and yet allow study and careful planning of the major rehabilitation to proceed efficiently.

Phase I. The Immediate Phase (1 two year term)

1. Provision of Technical Assistance Personnel
2. Provision of Intermediate Operational funding
3. Development of Phase 2 plans and costs

Phase 2. The Mid Term Phase (A five year term)

1. Provision of a fully staffed Technical Assistance team.
2. Provision of an onsite Technical / Managerial training team.
3. Provision of rehabilitation funds over the five year term.

Extending on these we recommend the following:

1. The Immediate Phase (Commencing January 1983)

1.1 By early 1983 provision of the following experienced Technical Assistance Personnel.

1. General Manager.
2. Factory Engineer
3. Senior Agronomist
4. Transportation Equipment Eng.
5. Senior Electrician/Engineer
6. Financial analyst/economist

1.2 Provision of the following budget funds totalling US $5,000,000 to be allocated in the following manner:

1.2.1. Immediate capital needs US $ 2,000,000

1.2.2. Provision of an internal foreign exchange account for two years at level of US $ 1,000,000 annually.

1.2.3. Development of feasibility of rehabilitation with associated costs and earnings anticipated during the mid-term phase. This to cost about US $ 1,000,000 (Consultant and Study Costs).
2. **The Mid-Term Phase**

2.1 Expansion of the initial T.A. team outlined above to a fully manned management team. Make up of this team would result from findings over the short term programme. This team to be in place until 1990.

2.2 Provision of a specialist training team with the objective of upgrading Somali Nationals in management and technical skills. This team to be in place until 1988.

2.3 Provision of the rehabilitation funds. The precise level of funding for this would be established during the "Immediate Phase". It is in our opinion unlikely that these funds would be less than ... $15,000,000.

2.4 Concurrent with the above initiatives it is expected the company would require restructuring financially and organizationally.

We therefore expect the budget for the immediate phase to be not less than ... $5,000,000.

The detailed requirements of the mid-term phase would depend on the findings of the immediate term phase but would possibly require a budget of not less than ... $15,000,000 for a total projected budget of U.S. Dollars 20,000,000.

GENERAL MANAGER

SJI is an enterprise in decline. A decline which rate may be measured by falling sugar cane yields, falling sugar volume, increasing costs per unit of production and increasing financial losses. In specific data relating to such measures are contained in the relevant sections of this report.

The losses experienced in recent years are continuing at this time and question the viability of sugar production at Jowhar. Although such a pertinent question fall outside the terms of reference for this "production operations" review, we have the following comment.

It is noticeable that Jowhar reached a peak of productive activity in 1970 - 1974 when 460,000 tonnes of cane at an average yield per hectare of 80.5 tonnes produced 47,500 tonnes of sugar. This according to the ...
relevant financial statements in an attractive sugar production level. Between 1976 and 1979, R.N. Macdonald and Partners, under test conditions, showed that yields of about 100 tons/ha are possible. Their claim is further substantiated by Dr. Aro of Australia in their report of September 1980. This is generally supported by the agricultural manager at Jowhar being feasible production.

A yield as reasonable as 75 tonnes per hectare would provide a very adequate 440,000 tonnes of cane for crushing.

We also note that the sugar content of the cane has remained, within limits reasonable for agricultural variances quite constant. E.g., the 1970-71 season recorded a cane sugar content of 12.9% 1976-77 recorded the highest in the 12 year cycle at 13.1% whilst 1960-61 and 1961-62 recorded 12.5% and 12.6% respectively. It should be noted though that the percentage of recovery of sugar/cane has declined from about 10.0% to 7.5% over the same period. This could have its cause in present and past sub-optimal agronomic practices.

If then there is evidence that there is no generic weakness in the agricultural potential of Jowhar estates then the intriguing question must be what is causing the decline? Other better specialists have touched on into inhibitions brought about by government policies and practices. Policies such as price control, and practices such as the Letter of Credit procedures have been highlighted. Specialists in agronomy have repeatedly recommended action to commence to reclaim land, improve drainage, improve harvesting and transportation. Other surveys have recommended the upgrading of the crushing and sugar manufacturing and the steam supply system. Others point out that company reorganisation and financial restructuring is required. In other words everything can be upgraded. It is our conclusion however that the central and pernicious shortcoming is the alarming weakness of general, administrative and technical managers.

The technical shortcomings are dealt with in other sections of this report. Our operations audit however discovered the enterprise to be almost devoid of sound and accepted "General Management Practices ".
It is true that the problems of management and control have persistently beset public enterprize in most parts of the world and there is no reason to find Zonale different. Essentially these problems are encouraged by the difficulty of assessing public sector performance and of providing managers with adequate incentives to attain efficiency in their operations.

With the former at Jowhar we have found no objectives, no policy guidelines and no evidence that profitable operations is the criterion by which to judge.

The role of the General Manager under such circumstances becomes very difficult. The latter can it be to create the conditions which permit the company to meet its objectives.

At Jowhar the financial crisis is worsening. In judging the technical efficiency of the enterprise successful management of a manufacturing enterprize requires the adoption of a number of standard and proven practices. ‘t is the adherence to such practices which is ‘prima facie’ evidence of efficient management. Alternatively ‘in,colle:acy’ is a ‘prima facie’ argument against a technique or style of management.

So list below ten criteria we consider essential in creating and maintaining a well run organization and some of the adoption of and adherence to these criteria by Senior Management at Jowhar.

1. The Company policy and objectives understood, agreed and in writing.
2. The setting of key managerial objectives with appropriate responsibility onto managers.
3. The holding of regularly scheduled working management meetings.
4. The involvement of factory and field management with the development of budgets.
5. Production Planning meetings.
6. Cost control methods in place and in use.
7. Adequate technical and job training for personnel.
8. Use of standards for control purpose.
9. Distribution of reduction results among all management and technical personnel.
10. The identification of future personnel needs and a recruitment and promotion plan. None are followed.

AGRICULTURAL OPERATIONS

There is a saying that "sugar is made in the field, not in the factory". Although a somewhat over-simplification of a complex mechanical chemical processing system involving in co-dependent variables it is true that cane quantity, quality and availability is at the heart of a sugar refinery's productivity.

Review of the operations of the Agricultural Department emphasises this, and revealed the major influence that the decline in cane growing and harvesting performance is having on the production of sugar.

The operations audit was conducted in co-operation with Mr. Ahmed Ibrahim Sassen, head of Agricultural operations and these conclusions are based on discussions and considerable data provided by him.

Cane growing at Jouran has been studied extensively by specialists. In particular Sir. P. Macdonald and Partners of the U.K. and Davy Agro Pty. of Australia have produced relevant and detailed reports. The reports reveal a noticeable level of agreement on the problems. Both indicate an attractive cane growing potential exists but this potential is not being realised. But then has gone wrong? Two key factors have been identified:

1. Poor agricultural management practices and,
2. Deteriorating soil productivity.

to these can add:

3. Poor equipment utilization and
4. Sub-optimal harvesting practices.

Profitable production levels have been reached in the past but the situation worsens. The deterioration may be observed in the following:

1. In a 1960 report Davy Agro Pty. stated that for Jouran 5,633 ha should reasonably produce 437,500 tonnes of cane. As noted that in the 1971-72 crop year 5,633 ha produced 428,100 tonnes of cane (76 tonnes per ha). An achievement in keeping with the Davy Agro expectations. However since that time both volume and yield...
deteriorated. In the 1972 campaign 4,606 ha produced 166,124
tones of cane (34 tonnes per ha). This represents a decline
of 50% from the achievements of 1971-72.

2. The influence of the number of recont on cane sugar yield is
widely recognized. The number of reconts over about four years a
respective decline in yield.

It noted that in 1961-62 some 40% of the cane harvested
comprised of 2nd recont cane. Average yield over the two campaigns
however was only 40 tons/ha. This suggests that extremely poor yields
were being achieved on some cane. Navy officials have suggested that at
Junior 2nd recont cane should reasonably yield 75 tonnes/ha. The conclusion
must therefore be that Junior must have production of cane of a high number
of reconts.

3. Another measure of crop productivity is : tons of sugar
produced per hectare harvested%. Over the period 1961-1970
yields of 9.91 tonnes per ha were recorded.

Over the five year period from 1977 to 1982 the average however has
failed to 5.13 tonnes/ha, a reduction of about 47%. Tons of
sugar per hectare also show consistent decline and by 1981-82
have fallen to about 35% of the production 1977-78 achievement.
Cutting and harvesting of cane represent key areas with difficult
problems. They are receiving close managerial attention.

Although these harvesting systems could be called on the
agricultural department has abandoned the "whole stick" harvesting
mechanical method. Their reason for this abandonment is because the
method does not extract trash from cane, and in order to ensure relatively
clean cane i.e. clean as manually harvested cane, there is a requirement
of 25 persons per 0.25 ha to separate cane from trash. Manual cutting
is not significantly slower under good conditions with skilled cutters,
and requires about 30 persons per 0.25 ha harvested to produce clean cane.

Manual harvesting therefore remains an attractive method. At
Junior it is handicapped by severe labour shortages. Yet in order to
get 2,000 tonnes of cane over a 24 hour period, a volume necessary to
satisfy plant requirements, it is estimated that 13,200 man hours of
...
effort are needed. Assuming the six hour cutting day to be the reasonable maximum time a cutter could work in the cane field then 12,000 2200 cane cutters are required. This in practice is reduced by the use of overtime for limited periods, but even so, it is unlikely that sufficient cane could be cut 100/annually with less than 1,200 - 1,500 cutters.

At present the Agricultural Manager reports that he has at his disposal only about 350-400 cane cutters. This season the "Toft" combine Harvesters are operational. It estimated they are handling about 50% of the cutting. This decreases the requirement for manual labour to about 600 to 750 persons. Assuming the about three hours overtime is worked by each cutter each day. This however still leaves the harvesting resources short by about 250-350 persons at any time. Management reported that in their opinion the main inhibitor to attracting cane cutters is the lack of financial reward for undertaking a hard, exhausting and dirty job. Overtime, a partial solution, is being used. About of the total crop is now being cut on "Overtime". The availability of workers willing to put in overtime however is, at best, variable.

That "by regulation" workers may only receive two hours of overtime per irrevocable of how long or how productive, they work is a dis-incentive. A cause of discontent which came to light during the survey is a rumour that John Sugar pays its cane cutters 15/- per task (normally 0.3 to 1.0 ton of cane) compared with 8/- at Joskhar. The Government, in 1977, instituted a "Volunteer cutters" program in the hope that it would ease a situation recognised even then as critical. Subsequent arrival of the unskilled, but enthusiastic volunteers caused problems, the impact of which is still being felt five years later.

Estate management believe that such "self-help initiatives are of little help in relieving the skilled worker shortages, and point out that unskilled harvesting is in fact damaging to the root system etc.

Other inhibitors to the productivity of manual cane cutting are incorrect row width, poor implement design and poorly supervised gangs. Poor scheduling, of cutting operations also is a key inhibitor.

The increasing utilization of the combine Harvesters has been forced, by circumstances, on Joskhar. The ratio of delays to operational
Random observations in the cane fields indicated delays accounted for 57% of all scheduled operating time.

Productivity of this equipment is affected by poor cane field layout. Then shape and size is not optimal for the combines operational characteristics. Uneven surfaces increase problems, and trash contamination is a major problem. The agricultural manager reported using up to 150 persons per hectare in sorting trash from mechanically harvested canes. Poor standards of soil tilth and inter-row cultivation exacerbate machine difficulties and encourage equipment failure.

Daily progress summaries this in September 1980. In September 1982 our survey found the situation unchanged. In 1980 Daily Agro stated that:

"Whatever the causes which underlie the poor growth of crows, there are significant losses of cane and sugar from inefficient harvesting practices."

"The ground cut is of poor standard, with wastage of cane. The steel in the row is spread so wide in rows that an effective swing of the knife is restricted."

"The knives themselves are not of optimum design and are often blunt. Topping is inconsistent and in some cases not performed at all. This is serious indications for sugar recovery."

The transportation of cane from the fields to the factory is achieved by a combination of three methods.

We compare these methods below:

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Railway</th>
<th>Midclara</th>
<th>Thompson</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>94.90</td>
<td>NIL</td>
<td>51.10</td>
</tr>
<tr>
<td>15.2</td>
<td>62.50</td>
<td>34.00</td>
<td>3.50</td>
</tr>
<tr>
<td>16.1</td>
<td>70.30</td>
<td>23.85</td>
<td>5.42</td>
</tr>
<tr>
<td>16.2</td>
<td>72.79</td>
<td>20.91</td>
<td>6.30</td>
</tr>
<tr>
<td>17.1</td>
<td>76.25</td>
<td>13.20</td>
<td>5.50</td>
</tr>
<tr>
<td>17.2</td>
<td>87.60</td>
<td>11.50</td>
<td>0.81</td>
</tr>
<tr>
<td>18.1</td>
<td>73.53</td>
<td>22.02</td>
<td>4.45</td>
</tr>
<tr>
<td>18.2</td>
<td>73.52</td>
<td>22.02</td>
<td>4.45</td>
</tr>
</tbody>
</table>
If the 1st season of the 15th campaign is removed from consideration then the railway moves about 74% of all cane. The Hidoma equipment moves about 18% and Thompson equipment accounts for the remainder.

The most pressing problem facing cane transportation from field to the factory is the poor state of maintenance and repair of the rail system. Of the 63 km of rail in use we estimate that 50% is in need of replacement. Although orders for 5 km of rail was placed in 1960, along with an additional 15 km earlier this year, as of September 30th 1962, none has arrived at the site. Management is endeavoring to increase the use of the Hidoma equipment so as to minimize the load on the rail system.

Utilization of alternative equipment is itself unfortunately seriously handicapped by equipment breakdowns. Examination of the availability of equipment revealed the following:

<table>
<thead>
<tr>
<th>Type</th>
<th>Stock</th>
<th>Usable</th>
<th>Not Usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomotive</td>
<td>72</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Deutz Tractor</td>
<td>72</td>
<td>53</td>
<td>42</td>
</tr>
<tr>
<td>IF Tractor</td>
<td>290</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Railwagons 4T</td>
<td>474</td>
<td>200</td>
<td>274</td>
</tr>
<tr>
<td>Hidomas 9 T</td>
<td>22</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Caneloader</td>
<td>100</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>D 6 T 140</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D 4 T 100</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Paint 12 14 T145</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydrograder 140</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Scraper 140</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Excavator 105</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Linkbelt 105</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

In summary of the 622 pieces of mechanized transportation in stock 292 pieces (53%) were out of commission.

Investigation revealed a low level of maintenance management, complicated by a lack of critical parts. Although a simple maintenance procedure is available, it is only partially installed. There is no
detailed and preventive maintenance procedures. There is no useful breakdown analysis data. Maintenance activities are severely handicapped by the shortage of spares, of both hand and special purpose tools, of engineering supplies and most critically, by the absence of experienced maintenance supervisors and related technical and trade skills. Despite an absence of any relevant training to overcome these problems, one or two key personnel have from time to time been sent to original equipment suppliers for training. This effort is, however, too small to have much impact on the overall situation. In conclusion we must consent on the control exercised. Whilst agricultural operations are not necessarily recognized for observance of sound management techniques some control criteria is essential. A list below key criteria absent in Jourher's agricultural management practices:

- No evidence of a coherent agricultural policy or related practices.
- Budgets do not exist.
- While some "general and informal" planning discussion takes place no formal consultation with the factory or other department takes place.
- Management reporting is minimal. At best it is casual.
- No formal periodic reporting system exists.
- Human planning is practically unknown. An omission which is particularly critical because of the high vacancy rate in accounting planning. Concern must also be expressed over the failure of Jourher to keep skilled personnel over the years.

FACTORY OPERATIONS

The output of sugar at SIAD has been declining during the past 10 years. The problems in the sugar factory are closely linked with those of the Agricultural operations. As the state of the complex is poor, it is difficult to specify the contribution that each "weak point" in the factory gives to the total weakness.

In this report we have separated the production department, into five sections. Each is treated separately:

1. Cane yard and milling station
2. Boiler station
3. Electrical section
4. Juice treatment
5. Civil works
In general the grave situation can be seen from examination of Table 1:

<table>
<thead>
<tr>
<th></th>
<th>Camp 14</th>
<th>Camp 15</th>
<th>Camp 16</th>
<th>Camp 17</th>
<th>Camp 18</th>
<th>Camp 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons cane</td>
<td>360,000</td>
<td>260,000</td>
<td>360,000</td>
<td>260,000</td>
<td>230,000</td>
<td>166,000</td>
</tr>
<tr>
<td>harvested</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tons sugar</td>
<td>36,200</td>
<td>22,200</td>
<td>27,400</td>
<td>23,000</td>
<td>16,700</td>
<td>12,520</td>
</tr>
<tr>
<td>produced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery sugar/cane %</td>
<td>10</td>
<td>8.4</td>
<td>8.1</td>
<td>8.1</td>
<td>7.3</td>
<td>7.5</td>
</tr>
<tr>
<td>Sugar content of cane %</td>
<td>13.1</td>
<td>12.5</td>
<td>12.4</td>
<td>12.5</td>
<td>12.6</td>
<td>n/a</td>
</tr>
</tbody>
</table>

It is concluded that the factory extraction performance has deteriorated between 20 and 25% over this period (from 10% recovery in Camp 14 to 7.5% recovery in Camp 19). Expansion of the table to cover the campaigns from 1970/11 emphasizes an even more significant decline and indicates that signs of decline appeared as early as 1972. Present major constraints to good productivity performance in the factory area as follows:

1. No buffer stock in Cane Yard.
2. Dirty Cane - too much trash.
3. We need control of cane or mill.
4. Control and for milling chambon not fully operational.
5. Cane out to 1 missing.
7. Poor extraction.
8. High moisture content of bagasse.

Note I: is, at this time, of little relative importance as the delivery of cane to the factory is so unstable. e.g. refer to Table II downtime analysis:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of Cane (%)</td>
<td>43.43</td>
<td>43.45</td>
<td>30.01</td>
<td>11.68</td>
<td>41.0</td>
</tr>
<tr>
<td>of total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>downtime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This table shows quite clearly that out of the total down-time, lack of cane, except for 1980, is the most significant lost-time factor. The rest of the down time is as table III shows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal overhaul</td>
<td>5.61</td>
<td>5.19</td>
<td>4.44</td>
<td>4.35</td>
<td>2.75</td>
</tr>
<tr>
<td>Electrical faults</td>
<td>6.41</td>
<td>6.08</td>
<td>11.22</td>
<td>10.05</td>
<td>5.80</td>
</tr>
<tr>
<td>Mechanical faults</td>
<td>16.05</td>
<td>17.55</td>
<td>16.20</td>
<td>24.62</td>
<td>12.26</td>
</tr>
<tr>
<td>Boiler faults</td>
<td>10.53</td>
<td>11.06</td>
<td>17.78</td>
<td>23.46</td>
<td>17.55</td>
</tr>
<tr>
<td>Other</td>
<td>17.17</td>
<td>15.84</td>
<td>20.35</td>
<td>25.84</td>
<td>20.56</td>
</tr>
</tbody>
</table>

As the objective is to bring about improvements in production performance, however, the problem of the Cane Yard and Capacity of the mills are critical because these will become key problems as soon as the cane supply stabilizes.

In order to maintain reasonable buffer stock, a detailed review of the incoming rail feed loop is a necessity. This study should however take into consideration the fact that approximately 30% of the incoming cane now is transported by trailers.

The design capacity of the milling tandem is 100 t cane/h. Management in order to try to improve the extraction from the mills has made mechanical alterations, e.g. change in the pitch from 40° to 30°; with the result that the present capacity is said now to be 70 t/h.

Table III shows no. of tons cane actually crushed, and the total theoretical crushing capacity of 70 t/h for a working day of 18 hours and 10 hours crushing. The figures cover 1980/81 (crushing days = 163) and 1981/82 (crushing days 163).

<table>
<thead>
<tr>
<th>Tons of Cane</th>
<th>Crushing 16 t/d</th>
<th>Crushing 20 t/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of Capacity 230,500</td>
<td>205,300</td>
<td>256,200</td>
</tr>
<tr>
<td>at 70 t/h</td>
<td></td>
<td>220,200</td>
</tr>
<tr>
<td>Actually harvested</td>
<td>230,546</td>
<td>165,300</td>
</tr>
</tbody>
</table>
It is not unreasonable to expect the number of crushing hours/day to be approximately 20, but even at 18 h/d the table still shows milling over a noisy, and as such, the management's complaints of too little capacity seem hard to justify. It is possible though, that should the cane supply situation improve one can expect the appearance of occasional capacity problems with the milling equipment as currently set up.

The problems caused by dirty cane and trash are known at sugar estates where the better part of the cane harvesting and loading is done mechanically. The alternative is either to improve agricultural practices, to hand harvest, or to install a cane washing arrangement, or some combination. The cane washing arrangement will not solve the trash problems. The present situation at TMA where the cane carrier pit has to be cleaned every day is not satisfactory as this both time and labour consuming.

Such of the trash consists of unburnt leaves and the problem starts in the field. Solutions cannot be introduced in the factory, but should be resolved on the agricultural side.

Such down-time is lost due to check-out of mills, particularly mill No. 1. The lack of good control contributes to the problem of mill check-out. Poor cane knife performance is another critical factor. It is therefore important that speed regulation of the cane carrier is introduced. Another important factor is that the cane knife No. 1 is missing. Proper cane treatment just is not possible when a cane knife or leveller is missing. This single item reflects the very grave spare parts situation facing TMA in general. The electric motor has removed to replace a burnt-out boiler fan motor. It is also evidence of extremely poor electrical maintenance. According to management as much as two hours down-time is lost daily due to mill check-out.

An average of about another two hours down-time a day is incurred due to trip iron problems. This in practice causes not only down-time but has a potential for damage to expensive cane knives and valuable mill rollers. Such problems could actually be reduced if the trip iron and mill operators, paid closer attention when operating. However one cannot
completely disregard the possibility of sabotage. A metal detector may be beneficial at this point.

The extraction from the mill has declined, see Table IV below:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Extraction</td>
<td>90.65</td>
<td>89.5</td>
<td>90.2</td>
<td>87.8</td>
<td>89.1</td>
<td>86.8</td>
</tr>
</tbody>
</table>

The milling tandem was installed in 1963 with a design capacity of 100 tons cane/hour. Evidence of decline in capacity is somewhat difficult to establish as this of course is linked with the falling amount of cane being harvested. However, as shown in Table III, there should be no reason for concern for milling under capacity, at least for the next year or so.

In spite of many attempts to adjust the setting and thereby improve the extract on performance of the milling tandem, no improvements have so far been achieved. Many foreign experts have been involved, but not even engineers from the mill manufacturing company from France appear to have had success. The milling tandem should for long-term improvement and ease of operation be relooked. The poor setting of the mills causes, besides poor extraction, and thereby significant losses in sugar produced, a too high moisture content in the bagasse. The moisture content of the bagasse would in a properly running mill be approximately 47-48%. 50% could be accepted with 50% being the maximum. Table V shows the average figures for moisture contents in the bagasse during the last five years:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture in bagasse</td>
<td>51.8</td>
<td>51.4</td>
<td>54.7</td>
<td>55.9</td>
<td>55.8</td>
<td>54.6</td>
</tr>
</tbody>
</table>

The problems of the high moisture content will be further reviewed in this report.
The fuel consumption during recent years has been fluctuating noticeably and appears to be increasing at a disturbing rate. Table VI provides the last five years consumption of furnace oil:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>1,202,500</td>
<td>3,920,400</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Lack of instrumentation does not permit analysis of boiler efficiency, but by experienced observations efficiency appears low. Poor boiler performance is due largely to:

1. Feeding of too wet bagasse
2. Inadequate combustion
3. Inadequate water treatment
4. Inadequate soot blowing

It is very difficult to give these factors priority; they could in fact be equally important. In any well run boiler plant none of these shortcomings would be allowed. As the instrumentation at the boiler station is poor, it is not possible to make any steam or energy balance or to determine the efficiency of each individual boiler. Combustion is obviously extremely poor and all factors, as mentioned above, will contribute to this. It cannot be emphasized too much that these factors are all of the utmost importance and should be brought to normal standard as a priority. In and around the factory there is a serious problem from fly-ash contamination. The fly-ash separator is out of order and the feeding of wet bagasse and inoperative soot-blowers are key-contributing factors. As mentioned, the instrumentation is extremely poor, and proper combustion control is just not possible. The fact that there is no water treatment plant is a significant contributing factor to poor boiler performance. The boilers are presently de-scaling at the end of each campaign, but the building-up of scale inside the boiler tubes and the effect of soot on thermal efficiency, will of course have a serious effect on energy performance. The lack of water treatment will endanger through scaling up the steam turbines, increasing the possibility of damage.

/...
The total installed electrical generating capacity is presently 7700 KVA and the number of generators are following:

1. Steam Turbine of 3000 KVA
2. Steam Turbine of 2500 KVA
3. Diesel Generators of 900 KVA
4. Diesel Generator of 900 KVA

The condition of the entire electrical system is shocking. It is quite surprising that not more than 5 to 11 days' down-time is allocated to electrical faults, although down-time alone however does not clearly show the true costs of poor performance of the electrical service. A substantial number of electrical motors are burnt-out each campaign (last campaign 21 motors). One of the reasons for continuing poor milling performance is due to the in-operation of cane knife No. 1, whose drive was used to serve as a fan motor for the Enrico Gasetti boiler. This had burnt-out and had to be replaced by cannibalization of the cane knives motor system. Moreover one goes in the factory, in the power house, on the entire state, motor gear, overhead lines etc. and the entire electrical system is in extremely poor condition. Even bushings, power cubicles and fuse boxes, and even high tension conductors, seem to be the rule rather than the exception. The management complains about fly-ash problems, but allows the doors on the buildings etc. to be open. Safety standards are totally unacceptable and corrective measures should be taken immediately.

The juice treatment plant including clarifiers, evaporators, crystallizers, centrifuges etc. seems to be operating satisfactorily. The equipment appears to be in a fair mechanical state, and for the time being no capacity problems are apparent. The main problems during last campaign were worn-out pumps and lack of spare parts, both electrical and mechanical. However, the performance of this section has been reasonably good. This comment has to be reviewed however, the performance of this section has been reasonably good. This comment has to be reviewed however, in the light of high factory down-time and the staleress and poor quality of the Joubert cane. Remarks in the Production Managers report concerning
the sugar house performance in campaign 19/2 like: “The trouble here is the implementation of (can boiling) procedures. The workers don’t like the extra effort it involves and the shift supervisors don’t understand its importance”, indicates that even juice treatment equipment efficiency is capable of improvement. The purity of the mixed juice is given in Table VII.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Juice Purity</td>
<td>80.7</td>
<td>78.9</td>
<td>78.1</td>
<td>76.8</td>
<td>76.6</td>
</tr>
</tbody>
</table>

These figures are rather shocking and show a depressing trend. Because of them it is surprising that the factory is producing any reasonable sugar quantity. The key reason for our mixed juice purity is poor quality of cane. It must be emphasized however once again that sugar production is a continuous process and as such no part is independent from its predecessors. Poor performance at one point leads to loss at another.

Civil Works.

The structure of SLL-Mrs 8 Sugar Factory is generally sound. Settlement of the milling floor was minimal and within acceptable limits. A civil engineering expert who examined the plant confirmed this verbally to the UMA team during this survey. His report is awaited. The civil works needed consists mainly of roofing, flooring and drainage. No major needs concerning building structure, foundations etc., are necessary.

Conclusions

The state of the Sugar Factory is far from acceptable. Considering the overall performance it is quite clear that grave technical mismanagement has taken place over the years. It is not reasonable to blame the present or previous management at SLL-Mrs 8. Responsible ministries should have seen to a clear indication of deterioration, without bringing political questions into focus, the present state of SLL-Mrs 8 clearly shows that the government guidance of the public sector enterprise has
failed significantly in this case. A major aspect noticeable in the present situation is the poor manpower situation. Any suggestions regarding training, recruitment of skilled manpower etc. can, and have, been made but with the present policy regarding salaries, all suggested improvements will probably have minimal impact.

The Factory management has proposed a new organizational structure for the Production Department, but the advantage of this is dubious, as most positions on medium levels are still unmanned, and as there is little hope of getting these positions filled as long as the wages offered are at the present low level. Another aspect to be considered is that sugar processing is a relatively sophisticated manufacturing process, and in order to be able to produce the sugar with minimum costs, experienced and skilled personnel are required. It is doubtful whether Somalia presently has the skilled manpower capacity to manage a relatively large industrial enterprise like S.A.I. - MIL. The Government seems to have recognised this in the Juba Sugar Project and it is reasonable to contemplate that similar measures be taken for S.A.I.

It is essential that solving man power problems is just one step however in the right direction. Other changes regarding industrial policy must be made. Proposals e.g. pricing policy, labour code, financial management, etc. have been given many times and the responsible government officials still have to face each decision if S.A.I.-MIL is to be once again an economically sound enterprise. Only the figures are necessary to give the urgent need for action:

<table>
<thead>
<tr>
<th>TOTAL SUGAR PROD.</th>
<th>1971</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44,052</td>
<td>12,519</td>
</tr>
</tbody>
</table>

These figures not only indicate the decline in production performance but gives a clue to the poor financial matters which is not in the terms of reference for this Survey, but have been reported previously by a UNDP team in June, 1982.
TACTICAL BACKGROUND

Sugar manufacturing may be classified as comprising of an agriculture and a manufacturing element. The field management of sugar cane is a complicated agrimachinery activity. An estate needs sound, experimental control and ongoing developmental farming in order to obtain results such as high sucrose, good juice quality, low fibre content, high tonnage, either or no flowering, good growth habits, good rooting qualities, resistance to disease and freedom from pests. The bulk of cane harvested at Jowhar is beaten by hand with the cane knife, although the cane shortage is leading to an increasing use of mechanical means of cane cutting.

Various types of cane loaders have been tried and are operational. Incorporation of such mechanization has accelerated in recent years because of a growing labour shortage. Recent transportation of cane at Jowhar is a combination of a portable track system and tractor drum carts.

As is common on sugar estates, the transportation system itself consists of the acreage,"infield" transportation, and of "outfield" transportation. These are linked through transfer sections to the cane unloading system at the mill.

The manufacturing element consists of the weighing/unloading of cane, the extraction of juice from the cane and its transportation to the refinery state. In this stage technical data becomes of paramount importance for sound control and high productivity. For example, the peripheral speed of the mills is critical. Consequently it should be carefully regulated according to the size of the mill, the diameter of the rolls, and amount of cane to be ground. Efficient sucrose extraction is directly related to the careful control of such factors. The moisture content of bagasse is directly related to the roll opening and it is generally recognized that a well operated sugar factory with varieties of sugar cane not having less than 10% fibre should not need any other fuel than the bagasse provided from the tandem. 1 It should be

1 Jaffar Sugar Mills. Bulletin 312 A.
noted that for the calculation of boiler house efficiency (BHE), a step essential for maintaining high mill performance, the standard practice is to weight or measure the raw cane juice.

Subsequent steps involve liming (of the mixed juices). Good clarification is essential for the production of quality sugar. The move to mechanical harvesting and loading has a relationship with, and an impact on the performance of the clarifiers, e.g. dirty cane leads to excessive retention of hot juices in the clarifiers. The filtration of mud from the clarifiers indeed is a critical part of the mechanical system. Evaporation permits the concentration of clarified juice to a syrup consistency in a multiple effect, and the vacuum pans result in the crystallization of raw sugar. Both aspects require careful and continuous monitoring and control. Steam economy is a factor of great cost importance. Fuel balance is critical. The efficient withdrawal of vapours can result in big steam savings, because exhaust steam, after being used for the evaporation of water in the multiple effect system is transformed into vapours which are used in the heaters and vacuum pans.

Thus the factory system is totally interdependent with changes in one part affecting the performance of another part; put instances of incorrect changes and individual alterations are frequent at SAI.

For maximum plant efficiency all sugar must be accounted for, through the whole manufacturing process, from whole cane to raw (or refined) crystals. Technical, Chemical and physical control are of paramount importance, e.g. sugar content analysis monitors chemical and physical losses. Mechanical losses from entrainment, leakage and spillage must be known, and controlled, and so-called "paper losses" due to incorrect weighing or measuring can have serious implications on productivity. Finally we point out that more frequent stock checks should be taken throughout the factory if the optimum production costs are to be achieved.

The technical management at Jodhar, produces factory white sugar of recognised quality. Moreover from the foregoing it may be seen that the achievement of attractive costs requires the immediate and on-going control
of a range of factors. Such control systems are not adequate at JII. There is an alarming lack of instrumentation and process control devices. The absence of labour, material, and energy standards only leads to the conclusion that unless the company is unusually lucky the absence of such controls is permitting unacceptable, high costs to occur. The absence of cost data however leaves this conclusion firmly in the area of an assumption.

PERSONNEL MANAGEMENT

Personal management at the Estate has a broad mandate. It is responsible for manpower planning, recruitment, training, and transfer of personnel. It is responsible for a range of social programs for staff, ranging from housing, medical services and meals, to working conditions.

At no time however has it been possible to find the related company objectives spelled out in the context of a personnel policy applicable to JII. This report is concerned with productivity and perceives the most significant concern in this regard is in the area of manpower.

A critical lack of skilled workers exists. Recruitment is not conducted by the company manager, but is personally conducted by the Ministry of Industry, albeit as a "requisition" for personnel from the company; however, criteria for selection is not based on experience, attitude or trade skill, although criminal and health records are scrutinized. This policy is apparently established by government. Any change to this policy is based on the plant management by government and it appears that the policy is designed to meet the social criteria of the government even if this leads to an inefficient situation developing at the factory. Once recruited however, skill and job training is not even given at Jodhpur. Workers do receive briefings of a general nature on the general goals and objectives of the company; these are mainly of a social responsibility nature and take place weekly at a political orientation centre on the estate.

The critical and alarming lack of skills at all levels appears to...
have had its roots in the historical development of the estate. Once privately owned and profitable, it was purchased by the Somali Democratic Republic in May 1970. On this purchase all of the expatriate skilled Artisans, Technicians and Managers left. Efforts to recruit in their place have consistently failed.

As a consequence the estate is entirely in indigenous Somalian hands. Unfortunately these personnel lack many skills and experience and so the problem grows.

Management today has expressed a qualified view (may be a hope?) that suitable staff could be attracted if the salary and amenities were much improved but point out their inability to make such adjustments to their personnel policy. In the meantime the deterioration in Plant, Equipment and resources continues to exacerbate the decline of the enterprise.
APENDIX - 1

1. PROPOSED INT. PROGRAME FOR THE INTERIM MANAGEMENT TEAM

Introduction

It is proposed that an interim management team be installed for a two year period. The work will be carried out by a team who will manage the daily operations with Somalian counterparts. In addition the team will carry responsibilities for planning the 5 year (1985-1990) rehabilitation programme.

The management team

It is difficult to define the exact work programme for this group, but from our review the following team will be probably be required. It is intended that one member of the team will act as the general manager of the project.

It is envisaged that a work team of six will be required for this with their responsibilities defined below:

1. General Manager and Team Leader
 - General co-ordination of all work and the conceptual control;
 - Policy decisions;
 - Administrative and financial control

2. Factory Engineer
 - Proposing and implementing necessary improvements to factory operations;
 - Assessment of factory manpower needs;
 - Assessment of factory equipment requirements;
 - Assessment of factory maintenance requirements;
 - Detailed study of power generation at the factory.

3. Sugar Cane Agronomist
 - Assess the yield potential of the estate to determine the possible cane production;
 - Review and propose and implement improvements to land preparation and cultivation methods;
- Review and propose and implement improvements to current cane research programs and field trials at the estate;
- Recommend changes in cane varieties and in means of increasing the number of varieties under test.

Study the disease incidence on the estate and recommend suitable phototoxic measures.

4. Agricultural and transportation engineer.
- Review, propose and implement where possible improvements in land forming, preparation and cultivation practices;
- Review, propose and implement where possible improvements to present cane harvesting and transport systems;
- Review, propose and implement where possible improvements to machinery maintenance, and maintenance manpower training;
- Review machinery and equipment requirements of both field and workshop, and workshop facilities and make changes where necessary.

5. Process technologist.
- Review, propose and implement where possible improvements to present factory process operations.

6. Financial Analyst / Economist
- Co-ordinating the preparation of capital and operating cost estimates for the implementation of the proposed rehabilitation programme;
- Identifying foreign and local currency requirements;
- Preparing the economic and financial appraisals of the rehabilitation proposals, including cash flows and estimates of return on investment;
- Assessing until costs of cane and sugar production, with and without the rehabilitation project.

2. FACTORY, PLANT AND EQUIPMENT

2.1. Factory, Plant, and Equipment

Examining in detail all processes currently used at the factory and carry out the following:

2.1.1. Existing Factory, Plant Rehabilitation
1. To verify and, if necessary, expand the factory equipment lists.
2. Prepare layout drawings and flow diagrams where applicable for the existing process.

3. Verify the condition of all plant and establish what rehabilitation work is required.

4. Prepare material, steam and fuel balances for the existing processes.

5. Verify the existing plant capacities for rated throughputs and recommend changes where applicable.

6. Prepare outline specifications for all replacement equipment.

7. All project components for this item will be prepared and will include man-power, equipment and other needs, and detailed estimates of capital and operating costs. Appropriate schedules will be compiled.

2.1.2. Factory Process Changes.

Recommend changes to processes where these would assist in the following:-

(a) improving factory efficiency;

(b) improving reliability;

(c) reducing down time;

(d) reducing operating costs;

(e) improving output quality;

(f) increasing capacity (as applicable).

2.1.3. Factory Maintenance and Records.

Examine factory records, spares and ordering and maintenance systems and recommend changes where it is felt these would benefit the smooth running of the factory. In particular, improved plant records systems should be given close attention.

2.1.4. Factory Workshops

1. Examine the present function of the factory workshops and recommend and implement changes where applicable.

(a) Increase the output of locally manufactured spare parts for the factory and equipment to reduce dependence on overseas supplies of spare parts.
(b) improve operational efficiency;

2. Examine the viability of a central workshop to carry out work which is too large for the existing workshops of the four production units.

2.1.5 Factory Organisation and Training

Examine the present factory staff structure and manpower availability and advise on the following:

(a) any desirable changes to the structure;
(b) training short comings and requirements;
(c) manpower requirements and availability.

Prepare a plan of implementation which will include man-power, equipment and other needs, and detailed estimates of capital and operating costs.

(d) Prepare an annual factory budget and a five year forecast.

2.1.6 Electric Power Generation

Examine in detail the possibilities of power generation at the factory and establish the economics and feasibility. All project components for this item could be prepared and include man-power, equipment and other needs, and detailed estimates of capital and operating costs. Appropriate schedules to be compiled.

2.2 Agriculture, Irrigation and Drainage

2.2.1 Irrigation and Drainage

Examine the irrigation practices currently in operation paying particular attention to the water requirements of crops, the supply of irrigation water and the in-field water application methods. In conjunction with the agriculturalist, drying off procedures prior to harvesting should be studied and proposals as to how the efficiency of in-field water distribution may be improved at each production unit should be made. All project components for this item could be prepared and include manpower, equipment and other needs, and detailed estimates of capital and operating costs. Appropriate schedules should be compiled.
2.2.2. *Cane Harvesting and Transport.*

All operations concerned in the harvesting and transport of cane should be examined. They should include burning, cutting, loading, and transport. With the objective of securing the factory's daily cane supply requirements. They should also propose the most efficient methods of cutting and transporting cane.

All project components for this item should be prepared and include man-power, equipment and other needs, and detailed estimates of capital and operating costs.

2.2.3. *Cultural Practices.*

The management team's agronomist should examine the methods currently in operation for uprooting, land preparation, planting, fertilization, and control and rate of distribution. Emphasis should be given to the need for more effective land preparation methods and for ridge and furrow formation to assist in more efficient infield water distribution.

Cane yields should be further examined together with current rotation systems. Future cane yields estimated, and future cane supply be predicted. In this way, and in the light of each factory's design capacity, the requirements for further land may be assessed.

2.2.4. *Agricultural Workshop and Equipment Maintenance.*

The engineers will examine the operation of the agricultural workshops and the facilities available both in terms of buildings and of equipment.

Accurate inventories should be taken of all agricultural machinery and equipment identifying those items in working order, those awaiting spare parts and those which should be scrapped. Inventories should also be taken of all the available workshop equipment and tools. The engineers should determine the agricultural machinery and equipment required to accommodate the design capacities.

There should be a review of existing stores and facilities and make recommendations for expansion and renovation where justified.

/...
2.3 **Infrastrucure and Civil Engineering**

2.3.1 **Civil Engineering**

The team should review or have reviewed the resources and capabilities of the civil engineering services at Jeshur and prepare proposals for the strengthening of these services as required to meet the targets of the rehabilitation programme. Existing designs and construction techniques used for estate buildings and other structures should be reviewed and alternatives proposed where these would be more cost effective.

2.3.2 **Estate Infrastructure**

The team should assess the existing estate infrastructure, including office accommodation, stores, road network, electrical distribution, water supply and drainage, sanitation and communications. Recommendations should be made for maintenance, for modifications to existing infrastructure and for new infrastructure, required in view of the rehabilitation programme, production plans and pressure of manning levels.

2.3.3 **Social Infrastructure**

The management team will review existing social facilities and services on the estate, and will determine the responsibilities of the estate, and Government agencies, for the provision of the facilities. They should prepare plans, setting priorities, for the improvement in facilities necessary for the efficient operation of the estate and required in order to attract and keep the employees needed by the estate. They should review alternative ways of providing the necessary services.

2.4 **The 1985-1990 Project: Economic Analysis**

The team should prepare cost estimates in terms of foreign exchange and local currency, for the revised five-year rehabilitation programme to a level of detail and accuracy acceptable to international lending agencies. Estimates should also be made of future operating costs clearly indicating the incremental operating costs of the project.

A detailed analysis will be required of the unit costs of cane...
and sugar production with, and without, the proposed rehabilitation project.

The financial rate of return both incremental and absolute of the rehabilitation project should be estimated, in constant price terms, with sensitivity analysis for alternative ex-factory sugar prices and input costs. Sample accounts should be prepared, allowing for expected inflation, and taking account of the proposed capital structure of the company, and the likely terms of new investment under the phase 2 rehabilitation programme.

The management team will be expected to estimate the net annual foreign exchange savings expected to result from the proposed rehabilitation project, and to bring these findings together in a suitable planning document.

3.0. Not limiting the generality of the above the team will be expected to "Manage and Control" the day to day operations of the sugar estate at Jashar. It is anticipated that the reporting responsibilities for the expatriate General Manager will be as enjoyed by the incumbent General Manager, namely directly and solely reporting to the Minister of Industry.

Other team members will report directly and solely to the new General Manager.
7.2. KISIMAYO MEAT FACTORY.

Late in the assignment the Author was required to review the
handicaps to re-opening a major meat processing facility at Kismayo
Somalia.

The following section is a record of the findings.

CIVIL WORKS

All buildings were found to be in sound overall condition.
There was no obvious signs of structural deterioration.
No obvious signs of floor movement or heavy.
Some sections of the Kill Floor, and adjacent process areas
require maintenance.
All paint work has deteriorated.
Drainage could not be checked as factory was not operating.
A number of gates on the 1000 head of cattle holdings pens are
missing.
Grounds appear in good condition. Layout open and spacious.
The Factory buildings are about 14 years old having been built
in 1969 as a USSR Bi-lateral Aid Project.

PLANT ASPECTS

Integrated meat handling facility containing Slaughtering,
butchering, canning and by-products.

Kill Floor Capacity

Kill floor. 31 head / operating hour
Cooling Chambers -- fair condition and appropriately sized.

Condition

Some insulation requires replacing.
Kill floor equipment

Freezing Plant

High heat freezer. Rated operating temperature of -30°C. Capacity
37 tons product / operating hour up to 3 hours continuous production
to a maximum of 300 tons in an 8 hour period /...
Canning line

This line is obsolete has essential parts missing and cannot operate at capacity. Production management report rated capacity of 7,500 x 250 g cans per running hour. Equivalent production 1.80 tons canned meat per operating hour.

Management state that because of the age and poor condition of the Canning Performance seldom exceeds 1200 cans per hour. Equivalent production 0.33 tons canned meat per operating hour. Design capacity rated approximately 15 tons of product per shift. (8 hours)

Retorts

The 8 retorts are in very poor state of repair and a great deal of insulation needs replacing. From their appearance it is unlikely that adequate retorting performance can be achieved. This was later verified in conversation with the Technical Manager who said it is usual for as much as 30% of the finished production to be rejected because of unacceptable levels of bacteria.

Can Making

The factory is equipped with can manufacturing for the production of cans and lids from imported plates.

Body making rated at 150 / min.

Lid making rated at 300 / min.

Seam welding -- electric heat.

The Can making line is obsolete. Management report spares are unavailable and the line has not operated for some time. The efficiency of the electric seam welding device is suspected.

Finished Goods Store

Capacity 2,000,000 cans.

condition -- fair.
Maintenance Shop
Carpenters - Acceptable.
Machine - Acceptable.
- 2 Lathes.
- 1 Grinding M.C.
- 1 Vertical Drill
- 1 Welding bay
Electric Welding Plant.
The cutting tools were ruined and need complete replacement.

Power House
- 3 x 65 USSR Diesel Engines.
 600 HP at the rate of 375 r.p.m.
 400 KV manufactured 1964.
These engines are in very poor condition. The engineer reports that suitable spares can no longer be obtained. He has recommended their immediate replacement in a report to the Ministry of Industry.

Boiler House
- 3 USSR Steam boilers (oil fired) installed in 1969.
 Rated at 2.5 tons steam/hour each.
Engineer reports boilers are extremely inefficient. Losses are huge and spares parts are no longer available.

Cooking Water
All 3 Pumps require spares which are unavailable.

Refrigeration Plant
Comprising USSR Compressors:
- 4 x 1 stage 2 cyl reciprocating
 rated 100,000 K/cal hour
- 1 x 2 stage 4 cyl reciprocating rated 200,000 K/cal/hour
- 1 x 2 stage V twin reciprocating
Refrigerant: R612
All compressors are obsolete.
All in need of maintenance, but spares are no longer available.
Recent reports of consumption is reported, and some evidence of leaking pipework flanges and in situ valve leaks were noted and reported.

Cooking Lister Large separate 4 Vent Cooking facility was reported to be in serious need of replacement.
General Conclusions

Note: These conclusions concern the engineering aspects only and do not consider the economic viability of the business.

The facility is a 14 year old factory designed solely for the killing of meat. There is an integrated kill floor accepting 31 live cattle per hour for a maximum kill capacity of 300 T per shift.

The plant is no longer suitable as an operating cannery and both can manufacture and product canning are defunct.

Refrigeration plant, steam plant and electrical generation equipment requires replacin. Electrical wiring and factory services also require a careful and systematic overhaul. From an engineering viewpoint the plant is suitable for the killing, butchering and chilling and freezing of carcass meat only. Even this will require significant expenditure on the services. However
7.3. URSF PRODUCTION FACILITY

A review of the situation facing this Project as at May 1983.
INTRODUCTION

In April 1983, the Minister of Industry His Excellency Major General Abdalla Mohammed Fadel requested that the UNIDO Project to Strengthen the Ministry of Industry (DP/SOM/81/013) review a number of important enterprises in the public sector.

The objectives of these reviews were:
- To appraise their present situation
- To identify significant problems
- To indicate initiatives that may alleviate such problems
- To present the findings in a report

This report reviews the Urea Project - Warsadda Bacrinta, a chemical fertilizer manufacturing plant presently under construction at Gezira, adjacent to the oil refinery.

This report contains two main parts namely, a review of the Technical aspects and the economic outlook. Conclusions are drawn and recommendations made.
OBJECTIVES

This review has as its main objective to describe the situation existing at the project in May, 1983. It compares the actual situation with the planned one, identifies possible variances, and highlights problems.
TABLE OF CONTENTS

1. Introduction
2. Objective
3. Table of Contents
4. Conclusions and Recommendations
 4.1 Conclusions
 4.2 Recommendations

BODY OF REPORT

5. Technical Factors
 5.1 Project Description/Project Capital Budget
 5.2 General/Process Description
 5.3 Planned Production inputs - Outputs
 5.3.1 Proposals Received
 5.3.2 Proposal Selected
 5.3.3 Inputs
 5.3.4 Outputs
 5.5 Planned Mechanical Completion and Construction Schedule
 5.6 Description of Test Run Acceptance
 5.7 Training Aspects

6. Economic Factors
 6.1 Domestic Market
 6.2 International Market Trends
 6.3 Economic Analysis of Production Costs, Urea Plant 1984 Estimate
 6.4 Comparison of Production Cost with CIF Price of 1 ton of Urea (in US $)

7. Methodological Notes
8. Precommissioning and Normal Operations Schedule
CONCLUSIONS and RECOMMENDATION

4.1 CONCLUSIONS

1. The project is not economically feasible with present known costs
2. This process is technically unusual
3. The training programme achievement is inadequate
4. The construction phase has been fairly satisfactory
5. The mechanical completion is behind schedule, and some omissions require rectifying (refer note).
6. The 500 Ton test run, and the 48 hour period for the guarantee run, may be inadequate for the accumulation of sound data for decision making
7. There is an immediate need to finalize and fund the technical assistance agreement
8. To guarantee adequate performance test runs be carried out on the mechanical plant, the consultant of the Somali Government should check and certify Mechanical Completion Certificates demanded by the project contractor.

Performance test runs should show:
- All columns, vessels, pumps, heat exchangers, boilers, reactors, piping and other mechanical equipment have been installed, cleaned and flushed out in conformity with flow schemes, construction drawings, project specifications and manufacturer's recommendations.
- All instruments, control valves, differential pressure devices, interlocks, programmers and other instrumentation are correctly installed and functioning and that adjustments have been made;
- All electrical supplies have been installed and protected as prescribed; that motors have the correct voltage supply, and speed, horse-power and direction of rotation and are free to turn without obstruction;
- All relief devices, valves and bursting discs are correctly installed for the safe functioning of the respective plant;
- All effluent handling facilities, flares and incinerators can accept effluent.
- All ventilation systems and other systems for the protection of the operators and the environment are available and functioning;
- All safety facilities, fire-fighting, first aid, etc. are adequate.

Footnote: during our survey, we noticed some confusion and disagreement on mechanical completion between TPL, Ammonia Casale, and the Somali technicians. It appears that the project contract on this point is insufficient and somewhat vague in its technical description.
4.2 RECOMMENDATION

Our analysis has revealed the fundamental problem, that for the foreseeable future the plant will be uneconomic. The preparation of Somalian technician and managers is recognized to be inadequate, and there is a pressing need for a Technical Assistance agreement. We therefore recommend that His Excellency The Minister bring these matters to the attention of the appropriate authorities.
5 TECHNICAL FACTORS

5.1 Project Description/Project Capital Budget

In July 1975, the "N REN" corporation, an American based company, presented to the Somali Development Bank (SDB) a proposal for the establishment of an ammonia - urea production plant based on naphta as feedstock. The proposal was rejected by SDB on basis of recommendations made by UNIDO project SOM/72/007, who concluded that the project was not viable. Similar advice was given to SDB by Mr. F. Sheldrick, Head of Fertilizers Department, World Bank. In December 1978, a prefeasibility study on a similar plant, using Heavy Fuel oil as feedstock, was submitted to the State Planning Commission by "Snamprogetti", an Italian based company. The study was evaluated by DTCD project SOM/78/008, and again the project was declared non-viable.

In February, 1979, the "Protec" group of Italy carried out a feasibility study on the urea project for the "Ministry of Industry". Protec concluded, "The economical analysis of the project indicates that, when considering as cost factors the usual market values, the profitability is not verified, and so far the project is not feasible".

UNIDO Project 72/007 evaluated the feasibility study prepared by "Protec" in February 1979, again a conclusion was reached supporting the view of the non-viability of the urea project. "Technipetrol" (TPL) of Italy submitted on June 21, 1979, a commercial and financial proposal for an ammonia-urea plant with a daily production of 150MT/Day of urea, using Heavy Naphta as feedstock. The "Ministry of Industry" issued on July 3, 1979 a letter of intent to TPL, confirming its intention to assign TPL the contract on a turn-key basis, TPL however then submitted a revised proposal, dated August 10, 1979 for the construction of a urea plant.

This revised proposal was evaluated by SOM/72/007, who reiterated their evaluation, that the project was not viable. Attention was also drawn to the fact that in view of the letter of intent, TPL was entitled to charge the ministry with all costs borne by TPL in case the contract was not concluded. The "Ministry of Industry" however issued another letter of intent on September 5, 1979, in which the ministry authorised TPL to start as soon as possible on the execution of the final design of the plant. This letter of intent was subject to final approval by Somali and Italian authorities.
Much could be said regarding the financial and technical background to this project, but as we have to make this review on a "status quo" basis, we only look at the present situation and evaluate the plant and its economics as it stands.

The present total cost of the plant is US $70 millions. A further cost of US $6.5 millions is proposed by the TPL as being necessary to finance a "Technical Assistance Agreement" between TPL and the Somali Government. This important agreement has still not been financed. It was anticipated initially that the Italian Government would finance the agreement, but this arrangement has since been rejected. A similar approach to EEC was also recently rejected. At May 13th, 1983, TPL is continuing to press the Italian Government for financial aid to this T/A agreement.

The capital asset and construction, with the total investment of US $70 millions, is financed as follows:

a) US $10.5M - Italian Govt. - 9 years - 4% interest rate
b) US $59.5M - Bank loans - 9 years - 7.75% interest rate

It is understood that the Italian Government's insurance authorities has committed to paying the interest rates of the bank loans mentioned in b) should the Somali Government not be able to fulfill this obligation. It has not been possible to get detail on this matter, nor has it been possible to verify it by reviewing official documents.

5.2 General/Process Description

The use of heavy fuel oil as feedstock dictates that a partial oxidation process be used for the preparation of syngas. For the integrated process TPL have indicated that the following Licensors have been selected for the processes involved in the subject plant.

TEXACO - Partial oxidation and carbon removal
ALLIED CHEMICAL - H₂S and CO₂ removal, CO₂ recovery
HALDOR TOPSOE - Ammonia Synthesis
SNAMPROGETTI - Urea Synthesis
Ammonia Production:
The preheated fuel is gasified at about 1400°C with an oxygen vapour mixture. Said oxygen is obtained in an air fractionation section of traditional type. The gas produced is cooled down to 230°C and the soot is recovered in the slurry treatment section. The gas, free of soot, is sent to the CO conversion section where more hydrogen is produced. In the desulphurization section, sulphur compounds, essentially H₂S are removed from the raw gas and in the decarbonation section, bulk removal of CO₂ is taking place by means of selexol solvent. After the decarbonation section, the raw gas is mixed with nitrogen from the air separation section, i.e. a hydrogen to nitrogen ratio suitable for ammonia synthesis. The final purification of the syngas is performed in the methanation section, where CO and CO₂ slipped respectively from conversion and decarbonation sections are converted into methane that is harmless to the synthesis catalyst.

Shift conversion, CO₂ recovery and methanation:
The raw gas leaving the partial oxidation and carbon removal section must be treated to reduce the CO content. To this purpose it is sent to the shift conversion section where CO reacts with steam producing CO₂ and hydrogen, according to the reaction

$$\text{H}_2\text{O} + \text{CO} \rightleftharpoons \text{H}_2 + \text{CO}_2$$

As the raw gas leaving the partial oxidation contains sulphurized compounds, it is necessary to use a special catalyst being sulphur resistant. The Ssk type of catalyst of H. TOPSOE Co. has been selected for this purpose. The CO₂ is sent to the urea production unit.

Urea Synthesis:
Urea is produced by synthesis from liquid ammonia and gaseous carbon dioxide.
The reactions are as follows:

$$2\text{NH}_3 + \text{CO}_2 \rightleftharpoons \text{NH}_2\text{COOH}_4$$

$$\text{NH}_2\text{COOH}_4 \rightleftharpoons \text{NH}_2\text{COOH}_2 + \text{H}_2\text{O}$$

As it is necessary, in order to prill urea, to concentrate the urea solution up to 99.6% wt., a vacuum concentration section in two stages is provided. The above described process is extremely simplified, and it is intended only to provide the reader with an over view of urea/ammonia production by the process intended for the Gezira facility.
other important systems employed at the plant are:

a) Fuel oil feedstock, naptha, fuel gas and diesel oil systems
b) Waste water treatment system
c) Blow down systems
d) Inert gas system
e) Instrument and service air system
f) Steam and condensate recovery system
g) Condensate system
h) Fire fighting system
i) Demineralization system
j) Raw, industrial and drinking water system
k) Cooling water system
l) Reclaiming and bagging system
m) Flushing network
n) Steam network
o) Electric power generating system/public supply system.

It must be realized, that the urea plant involves complicated mechanical/chemical engineering features, even more so than usual because of the process chosen for the ammonia production. It is therefore absolutely essential that a solution is quickly found for the financial problems facing financing of the technical assistance agreement, for the Somali Government will not, with its problems of obtaining skilled manpower of medium/high level, be able to run the plant for some years. Information from TPL and the consultants Ammonia Casale Ltd. point to the serious problem of failure to attract good personnel. They stated that it is even extremely difficult to attract good, unskilled, local persons. Further enquiring into this problem revealed a view held by both the involved expatriates and Somalian plant personnel that the lack of housing, transportation, food and recreation facilities, at the site makes it difficult to recruit the better people. Fundamental to this problem is the widespread feeling that the low levels of remuneration, especially noticeable when international comparisons are made, has led to a lack of interest by people in going to work in the chemical processing complex.
5.3 PLANNED PRODUCTION INPUTS - OUTPUTS

5.3.1 Proposals Received

Three different proposals have been submitted for the production of urea employing various feedstock. They are as follows:

1. "H REN" corporation proposal of U.S.A. with Naphta at a price of US dollars 85 per ton and total investment of US dollars 46 millions and a capacity of 90,000 tons of urea per annum.

2. Snamprogetti proposal of Italy with Heavy Fuel Naphta as feedstock at a price of US dollars 10 per ton and capital investment of US dollars 41.5 millions and capacity of 50,000 tons urea per annum, using partial oxidation process for production of Syngas for Ammonia manufacturing and Integrated Snamprogetti process for the synthesis of urea.

3. Technipetrol (TPL) proposal of Italy with Heavy Naphta at 120 US$/ton and investment of US dollars of 38.5 millions (excluding interest, financial charges and working capital) employing steam reforming of heavy naphta for syngas and traditional two plant system with one plant for ammonia and the other for urea production.

5.3.2 Proposal Selected

TPL submitted a revised commercial and financial proposal together with a technical attachment, profitability analysis and a draft contract in response to the letter of the Ministry of National Planning which informed that heavy fuel oil is the only feedstock available.

The total price of the proposal was US $58.8 millions plus a provisional sum of US $8 millions to cover extra works, services and price escalation.

The process proposed for syngas is partial oxidation of heavy fuel oil, and for urea synthesis the "snamprogetti process". The price of heavy fuel oil assumed in the profitability analysis was US $110 per ton with the sale price of urea at US $280 per ton.

The "TPL" revised proposal, technical attachments and profitability analysis were studied and reports, comments and observations regarding viability presented to the Ministry at that time. Afterwards, a letter of intent was released to "TPL" to start, as soon as possible, the execution of the design of the plant based on TPL's revised proposal.
5.3.3 Inputs

It was assumed in the contract that at factory battery limits, the following would be available:

- Fuel oil (as process feedstock and fuel)
- Fuel gas
- Heavy naphta
- Diesel oil (for electric energy)
- Raw water from local deep wells network
- Chemicals
- Bags (polyethylene or polypropylene)

On the basis of the specification of raw materials and utilities available at the plant's battery limit, the plant is designed to consume the following inputs:

Expected figures

<table>
<thead>
<tr>
<th></th>
<th>Total consumption</th>
<th>Specific consumption (Unit/tons of urea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil (as process)</td>
<td>Tons/h 2.965</td>
<td>Tons 0.474</td>
</tr>
<tr>
<td>Fuel oil (as fuel)</td>
<td>Tons/h 2.12</td>
<td>Tons 0.339</td>
</tr>
<tr>
<td>Raw water</td>
<td>m³/h 70</td>
<td>m³ 11.2</td>
</tr>
<tr>
<td>Electric power</td>
<td>Kw 2695</td>
<td>Kwh 431.2</td>
</tr>
</tbody>
</table>

Guaranteed figures (will not exceed)

<table>
<thead>
<tr>
<th></th>
<th>Total consumption</th>
<th>Specific consumption (Unit/tons of urea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil (as process)</td>
<td>Tons/h 3.146</td>
<td>Tons 0.503</td>
</tr>
<tr>
<td>Fuel oil (as fuel)</td>
<td>Tons/h 2.378</td>
<td>Tons 0.380</td>
</tr>
<tr>
<td>Raw water</td>
<td>m³/h 86</td>
<td>m³ 13.76</td>
</tr>
<tr>
<td>Electric power</td>
<td>Kw 3025</td>
<td>Kwh 484</td>
</tr>
</tbody>
</table>

Water treatment section

- \(\text{H}_2\text{SO}_4 \) kg 1215
- Na OH kg 660
- Chlorine kg 105
- Corrosion inhibitor kg 150

Note: All chemicals are to be imported.

The overall consumption of chemicals per operating day will be the following:

- **Process unit**
 - Selexol kg 135
 - Heavy naphta kg 240
- **Thermal power plant**
 - Hydrozine kg 0.9
 - Trisodium phosphate kg 3

5.3.4 Output

The design of the plant is advised as being suitable to obtain the production of prilled urea not less than 150 MTPD with the following characteristics:

Expected figures (% wt)
- total nitrogen 46.3 min.
- content of water 0.3 max.
- content of biuret 0.8 max.
- granular

Guaranteed figures (% wt)
- total nitrogen 46.3 min.
- content of water 0.3 max.
- content of biuret 0.9 max.
- granular 1-2.4mm 94% wt

5.5 PLANNED MECHANICAL COMPLETION AND CONSTRUCTION SCHEDULE

As orally reported by project coordinator on 12th May, 1983, and checked by us., nine units have been mechanically completed. However, omission of some minor items still exists, therefore, the Mechanical Completion Certificate has been issued but with the incomplete minor works noted so as to not prevent the precommissioning. This is not considered prejudicial to the granting of Mechanical Completion Certificate.

Mechanical completion of the following main activities have been completed:

a) **Boiler**
- Completed mechanical erection of all parts including refractory
- Performed hydraulic test of Boiler Drums and Tubes
- Manufacturers hydraulic test certificates have not been produced by TPL at this date

b) **Reactors, Vessels, Towers, Exchangers**
- Installation of equipment, internal and structural have been completed
- Performed hydraulic and/or water filling test.
c) **Pumps**
- Settled and aligned pumps and drives
- Piping connections made
- Some modifications are required and will be made by TPL during precommissioning

d) **Compressors**
- Installed, aligned and levelled compressors, gears and drives
- Checked alignment and leveling of the machines
- Installed all necessary auxiliary items for tube, pumps, pipes, etc.
- Cold alignment of compressors, gears and drives

e) **Turbines**
- Installed and cold aligned turbine and associated piping
- Installed all necessary auxiliary items for tube and sealing, pumps, pipes, etc.

f) **Piping**
- Completed erection of lines including all supports and removed all temporary supports required for hydraulic test
- Hydraulic test of piping as required

g) **Electrical**
- Installed and connected all electrical equipments (motors, switchgears, transformers, panels, etc.)

h) **Instrumentation**
- Hydraulic test of instrument primary hook-up's
- Erected completely field instruments with relevant secondary hook-up's, pneumatic and electrical connection
- Erected control room panel and instruments with relevant connection
- Checked cables and pneumatic tubes for correct installation and connections

 This work is incomplete at this date.

i) **Insulation and painting**
- Insulation on equipment as required on drawings and insulation on piping as required on drawings is not yet complete.

 This work is proceeding.
As seen by us, and declared by the Project Coordinator, erection has been generally out in accordance with TPL and Licensor's drawings and specifications, and does not detract from TPL's responsibilities for mechanical and performance guarantees. However some deviation from design drawings exists. These have been noted and reported by Ammonia Casale (consultants) and by the project coordinators. These have been brought to the attention of the contractor (TPL Spa) all modification and changes are required to be made in observance of the contract by August 31st, 1983. The senior Somali Engineer on site, Eng. Dahir Warsame Elmi, has detailed knowledge of these omissions and should be consulted for further information.

5.6 DESCRIPTION OF TEST-RUN ACCEPTANCE

Soon after the mechanical completion of a unit has been certified, the relevant precommissioning operations are required to be started under the supervision of the contractor's supervisory team. Feedstocks and utilities must be made available by the Factory Representatives in quantity as required to carry out the precommissioning operations.

Once the precommissioning of a unit has been satisfactorily completed, the unit will be started up and put into operation. Feedstocks and imported utilities must be made available in order to ensure an adequate and uninterrupted supply to the plant. As soon as the plant has produced 500 tons of urea, the certificate will be issued for the production commencement. Soon after the production starting date, the plant shall be brought to its full capacity and shall be running continuously at the normal operating conditions so that the test-run can be performed. Raw materials for this first charge are to be provided by TPL Spa. When Feedstocks and imported utilities are available to ensure an adequate and uninterrupted supply to the plant and satisfactory operation at full capacity has been achieved, TPL shall give written instructions to Factory Representatives to perform the test-run in accordance with a procedure prepared by TPL and approved by Factory Representative (Somali side). The contract calls for the duration of the guarantee test-run to be of 48 hours of on-stream operation. The measured figures that shall be taken into account for comparison with the guarantees, shall be the average values. Reproducibility and and repeatability tolerances of test methods will be issued in TPL's favour.

These guarantees are specified in the contract between TPL Spa and Ministry of National Planning of S.D.R. dated 27.9.80, Article 10.

We would however point out that in our opinion the 500 ton test run and the 48 hours guarantee run is not adequate for test purposes. A longer period in these phasis is recommended before acceptance.
5.7 TRAINING ASPECTS

The implementation of such a highly complex and technically advanced petro-chemical engineering facility requires careful preparation and intensive training of local staff to enable them to assume in due course the responsibility for its management and operation.

This was recognized and the basis of the programme to "Somalize" the operation is contained in the present contract existing between TechniPetrol Ltd. and the Somali Democratic Republic. The commitments of the contract are described in section 11.0. Attachment #1 Technical Attachment to the contract dated 27.5.80, entitled contract between Ministry of National Planning of the Somali Democratic Republic and Techni-Petrol S.p.a.

This contract obligates TPL Spa to provide the management of training and to provide technical assistance to the owner for the solution of all training aspects and problems.

Under section 11.1. TPL is required to:
- Define and agree manning levels
- Determine the qualification and experience of personnel required
- Prepare the organization of functions
- Prepare appropriate job descriptions
- Jointly with the owner define the key positions

Under section 11.1.b. The TPL Spa is obligated to:
- Establish and execute the training programmes for operating personnel
- Provide the theoretical training in each speciality
- Provide the Industrial or advanced training
- Provide the on-site practical training component - to be held during the last two months before start-up

Under section 11.1.c. The TPL Spa is obligated to:
- Coordinate the overall training provided by vendors and process licensors

Under section 11.1.d. The Spa is obligated to:
- Indicate to the owner final utilization of trainees at the plant on completion of their training
Under section 11.2 The main objectives of the training are listed as:
- Technical and Professional training of plant personnel
- The acquaintance of trained personnel with their duties
- Make trained personnel self sufficient so as to be able to operate and maintain the plant
- Coordinate the overall training programmes provided by vendors and process licensors

Under section 11.3 The training programme is specified in 3 main phases
1. Theoretical training
2. Practical, in operating plant and vendor shops
3. Practical, on the site

Under section 11.4 The education level of each trainer and training course content shall be defined by the contractor at least 6 months before the start of the training. The training will be provided in one single session for 45 people for 6 continuous months.

The training contract places the following obligation on Somalia.

1. Provision of trainees
2. All trainees to have sufficient knowledge of the English and Italian languages and shall be competent Technical college/university graduates
3. Appoint 2 persons as Trainees Leader and Assistant. Trainees leader responsible for the behaviour of their trainees
4. The Somalian trainees will study deeply the operating manuals and mechanical catalogues of the plant
5. Lodging and administrative arrangements for the trainees
6. Bear the expenses of replacing trainees considered unsatisfactory by the contractor.

The actual situation existing with training has many omissions from the original agreed training programme described previously.

We summarize these as follows:
1. 45 trainees are required, but only 26 are receiving training
2. The Trainees Leader and Assistant have not been appointed
3. The training period of 6 continuous months has not been observed
4. The practical training aspect took place in an Italian plant of a different configuration and process from this one.
5. The on-job training aspects appear poor

6. In the opinion of the coordinator, and supported by us we believe the quality and depth of training to be inadequate. This is also the view of the Italian consultants "Ammonia Casale Spa"

The net result of the rather poor training phase will be the need for a long and expensive period of technical assistance and management.

It must be recognized that this complex technical process is unique in Somalia. In fact this particular combination of the licensors process linked in this way is rare anywhere in the world. At this design capacity it may even be unique. The effect of this pioneering of course indicates that even TPL Spa are learning. The rather weak training effort supports this view. Whatever the cause, we strongly recommend that the training and Somalization programme be thoroughly and immediately reviewed by competent specialists. It is likely that the training component will need to be greatly expanded and emphasized.
6. ECONOMIC FACTORS

6.1 Domestic Market

There exists various estimates of Domestic Demand of Urea. The most recent statistics published in "Foreign Trade Returns", Central Statistics Department are available for 1980. It indicates that imports of crude fertilizers and crude material in Somalia were 2154 tons in 1980 and 1262 tons in 1979. However, these figures appear to be rather low compared with information obtained from other sources. The urea presently used as fertilizer in Somalia is imported. Because at present it is used mainly for the following crops: banana, sugarcane and cotton, the consumption may be estimated, taking into account the cultivated areas and the rate of fertilizer use (kg per ha). It was estimated that in 1976, 7500 tons of urea were consumed in Somalia, out of which 500 tons were for cotton, 2000 tons for sugarcane and 5000 tons for bananas. In 1980, 10,000 tons were consumed, out of which 500 tons was for cotton, 4500 tons for sugarcane and 5000 tons for bananas. The figures for 1983 are not yet available. However, the Juba Sugar Project imported 2920 tons of urea in 1983, and the annual need at full production is estimated as 1700 tons of urea for this project. It would therefore seem reasonable to expect Somalia's domestic market to consume about 10,000 metric tons per annum over the next 2 or 3 years.

The installed technical capacity of the urea plant is 45000 tons per year. This largely exceeds the present domestic market needs so the balance of urea can only be exported provided that the cost of production allows for a price competitive in the international market.

There has been some discussion concerning placing the balance on the world market, and TPL Spa have given a commitment to Somalia to undertake this sales effort guaranteeing to market it in total on the basis of prevailing world market prices. There is proposed mechanism by which Somalia and TPL Spa would meet to establish an agreed price every 4 months, this price would be the 4 monthly future's price. No mention is made of a method by which to deal with differences which may occur between the cost of production and prevailing world market prices.
International Market Trends

While Western European Urea prices in February remained at the levels of the previous month, Near East export prices declined further in February indicating the current weakness of the export market for this product. The limited trade in urea in the first half of March 1983, may have also been influenced by the decline in oil prices. However, the fall in oil prices will not necessarily result in lower fertilizer prices since the production of most of the world's ammonia, the feedstock for the production of most nitrogenous fertilizer is based on natural gas.

Japan and the Republic of Korea use naphta in the production of ammonia. However, because of the relatively high price of naphta, manufacturers have been closing ammonia and urea plants. Thus, even if the price of naphta falls as much as that of oil, ammonia producers who use naphta would still find it difficult to compete with those who produce ammonia from natural gas.

The attached table shows the f.o.b. prices of urea (bagged)\(^1\). The average price is US $150 - 155 for Western Europe Urea, and US $130 - 150 for Near East Urea. It demonstrated a decrease of more than 15% relatively to the price of the previous year. The trend is downward.

\(^1\) Source: Food Outlook 29 March, 1983. FAO
6.3 Economic Analysis of Production Costs, Urta Plant 1984 Estimate

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit price</th>
<th>Production cost in US$</th>
<th>Production cost in So. Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fuel oil (Feedstock)</td>
<td>21982 t</td>
<td>289 $</td>
<td>6 352 798</td>
<td></td>
</tr>
<tr>
<td>2. Fuel oil (fuel)</td>
<td>16177 t</td>
<td>289 $</td>
<td>4 675 153</td>
<td></td>
</tr>
<tr>
<td>3. Fuel gas L.P.G</td>
<td>211 t</td>
<td>202 $</td>
<td>42 622</td>
<td></td>
</tr>
<tr>
<td>4. Naphta</td>
<td>600 t</td>
<td>344 $</td>
<td>206 400</td>
<td></td>
</tr>
<tr>
<td>5. Water (cooling)</td>
<td></td>
<td></td>
<td></td>
<td>189 000</td>
</tr>
<tr>
<td>6. Chemicals</td>
<td></td>
<td></td>
<td>242 400</td>
<td></td>
</tr>
<tr>
<td>7. Chemicals (locally provided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Catalyst</td>
<td></td>
<td></td>
<td>240 740</td>
<td></td>
</tr>
<tr>
<td>9. Bags</td>
<td>900 000 p</td>
<td></td>
<td>660 000</td>
<td></td>
</tr>
<tr>
<td>10. Administrative cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Electricity</td>
<td>25x10^6 kwh</td>
<td>2 So. Sh.</td>
<td>50 000 000</td>
<td></td>
</tr>
<tr>
<td>12. Technical assist. expatriate</td>
<td></td>
<td></td>
<td>3 250 000</td>
<td>15 431 415</td>
</tr>
<tr>
<td>13. Wages and salaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Maintenance</td>
<td></td>
<td></td>
<td>100 000</td>
<td></td>
</tr>
<tr>
<td>15. Depreciation</td>
<td></td>
<td></td>
<td>5 000 000</td>
<td></td>
</tr>
<tr>
<td>16. Interest</td>
<td></td>
<td></td>
<td>5 020 000</td>
<td></td>
</tr>
<tr>
<td>17. Taxation</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18. Fees</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Sub total Foreign exch. cost

Sub total Local cost

TOTAL

Data Source: Fuel and Feedstock Prices - Somalia National Petroleum Agency May 1983

Other cost - General Manager
6.4 COMPARISON OF PRODUCTION COST WITH CIF PRICE OF 1 TON OF UREA (in US $)

<table>
<thead>
<tr>
<th>PRODUCTION COST (1)</th>
<th>670</th>
</tr>
</thead>
<tbody>
<tr>
<td>of which COST OF FOREIGN EXCHANGE (2)</td>
<td>573(2)</td>
</tr>
<tr>
<td>C.I.F. IMPORT PRICE (3)</td>
<td>306</td>
</tr>
<tr>
<td>EXCESS COST</td>
<td>364</td>
</tr>
<tr>
<td>EXCESS COST (2)-(3)</td>
<td>267</td>
</tr>
</tbody>
</table>

The analysis of production cost shows that the project's foreign exchange cost alone is higher than a price of a comparable imported product. It costs 267 US $ per ton, more in foreign exchange to produce the product locally than to import it.

Because of this excess cost, it is highly improbable to export the balance between the production capacity and the domestic market needs without a substantial loss being incurred. Taking into account the international market trends this situation is not likely to change in the near future.

(2) The cost of foreign exchange should be increased by the opportunity cost of electricity which is produced in Somalia from petroleum products imported: diesel oil and heavy fuel oil.
The following data were taken into consideration while calculating the production cost:

1) The annual installed technical capacity of the factory = 45000 tons, the full capacity is attainable within one year of production. Start of production: October 1983, this annual capacity is calculated from daily capacity 150 m tons per day with 300 working days in a year.

2) US $ converted to So.Sh at official exchange rate is 1US $ = 15Sh.Sh. Because the data on foreign exchange component in the cost of electricity are presently not available and the cost of other important imports: Fuel oil, Fuel gas and Naphta are given in So.Sh. it was not possible to use economic prices with a shadow exchange rate. Instead an opportunity cost was estimated in US $ for Fuel oil, Fuel gas and Heavy naphta from the figures available in So.Sh.

3) Total capital investment is 70 millions of US $ from which 59.5 millions was a commercial loan with an interest rate of 7.75% and 10.5 million a loan from the Government of Italy with an interest rate of 4%. Thus the annual interest of the first year is 5.02 millions of US $.

4) The depreciation allowance was calculated assuming that the expected plant life is 12 years, and using a uniform depreciation rate: 70:12 = 5.8 millions of US $ the first year. We have however used US $5 millions as the depreciation in 1984 year estimate.
7.4 Coca Cola Production Feasibility Review.
In this section comments are made on the separate sections of the feasibility study approximately in the order of their appearance in that report. Some study estimates and costs have been adjusted in what we believe is more realistic manner in the feasibility study.

Section 1. Introduction and General Summary Section

Our review indicated it lacked detail and in particular the marketing aspects received superficial treatment.

The proposed franchise agreement between Coca Cola Africa Ltd., and the proponents was not available for scrutiny. It is recommended that the Ministry of Industry request perusal of this agreement before making any decision affecting approval or rejection of the venture. It is in the analysts opinion a critical document as it affects both technical and market support.

Not being in possession of plant layout, building plans, site plans or elevations no comment is made on these aspects.

The major weakness in the study relates to marketing, and a lack of data. It was noted that a sales increase between year 1 and 2 of the project equalled 30% and 10% is called for between years 2 and 3. Such a claim is indeed ambitious. 15% per annum is more in keeping with sound planning for similar projects.

Even through technical and marketing support is available from Coca-Cola Africa Ltd. the planned 50% bottling efficiency to be achieved in the first year is extremely questionable. A profit and loss statement based on achieving 50% in year 3 is developed herein, with only 50% achievement of their original first year efficiency being allowed in year 1 estimates.

Summary

There is no reason to doubt the technical claims of the study, however we believe the start up costs, and timing to reach planned production levels, are optimistic.
As such, costs are probably understated. A statement of more likely costs are developed he aim and projected for 3 years in a Profit and Loss Statement. The increased costs affect the capitalization, and pay back period, they indicate that a longer period to reach a profitable operating factory is more likely than the promoters presently anticipate.

It is hence the marketing aspects of the proposal which give most cause for concern. The claims appear optimistic, unfortunately no data is provided on the market structure, customer buying practices, the percentage of the market held by the competitor, or even the market capture that this company plans.

We are concerned that the marketing strategy as suggested built on under pricing the existing competition, will lead to severe cost competition in a fragile market. Pursuit of this product sales strategy could easily lead to reduced operating margins for both plants. Even to a point where the viability of both could disappear. A recommendation to the Ministry delay approval of this proposed project pending clarification of marketing issues.

To calculate the Break even point production of the proposed venture to be 1,055,255 cases, equivalent to 42,927,773 So. Sh. sales revenue at line of 0.80% of the annual rate of return (net profit after allowance for taxation) on the promoters equity of 23,173,763 So. Sh. is 3.6% in year 3. The original feasibility study anticipated a return on paid up capital in the third year of the project of 15.6%.

If least we have taken a rather severe approach, based on production manufacturing experience we believe that 15.6% R.O.I. is much too optimistic, we would expect in practise the annual rate of return to fall somewhere near 3.6% than 15.6% depending of course upon the skill and acumen of management.

Section II. Investment

A total investment of 59,300,000 Somali Shs is planned, see (b.4) of study. A 34% partners equity participation is proposed, whilst
advances from share holders of 39% of the capital requirement is noted. Machinery and suppliers credit will make up the balance (27%). We however calculate that 60,500,000 So. Shs. is a more likely capital requirement (See 8 of this report).

We noted that the bottling line and laboratory equipment is based on an exchange rate of 19 So. Shs./U.S. dollar. This we believe is prudent.

Land, buildings and equipment requires a capital budget of 10,300,000 So. Shs.

Investment estimates with the exception of pre-operating expenses, inventories and working funds are not criticized, although it should be noted that no source documentation or working papers were available, and as such discrepancies or poor estimates may be inherent. On the assumption that the time to reach production start-up is too optimistic, and the time to reach 80% efficiency is under estimated, we believe that the pre-operating expenses, allowances and working funds may be inadequate. These have been re-calculated herein. Of considerable concern is the calculation of the costs of inventories and working funds we believe they were calculated before the July devaluation of the Somali Shilling. This should be checked. A clue to this is found in the projected cost of 40 So. Shs. for inverted plastic crate which seems low.

The proposal that the project will become operational within 12 months from the commencement of site preparation and the letters of credit opened in favour of overseas machinery suppliers, is extremely optimistic, and should also be challenged.

The study states that "practically all raw materials will have to be imported". The influence of the recent devaluation alone will increase raw material costs per case:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>After devaluation</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola</td>
<td>22.4</td>
<td>23.9</td>
<td>6.3%</td>
</tr>
<tr>
<td>Fanta</td>
<td>25.4</td>
<td>26.6</td>
<td>4.4%</td>
</tr>
<tr>
<td>Sprite</td>
<td>26.6</td>
<td>24.4</td>
<td>6.1%</td>
</tr>
</tbody>
</table>

/*...*/
This indicates for this item alone that selling prices would have to be increased between 5% and 7% if the increased costs are to be passed on to the consumer in order that company operating margins are protected. No note provision is being made for the treatment of Somali Shillings.

Section III

The marketing strategy proposed is based on price competition. The soundness of the strategy must be carefully questioned. It causes us concern.

In stronger markets the strategy may be sound, but in the Somali economy, with the difficulty of financing and in developing reserves of funds it could be the undoing of the project, and even of the local existing competitor. It would be ironic if the Government, in its desire to develop the industrial base encourages this project at the expense of the existing bottler, or even of the both enterprises. Caution is therefore advised.

I strongly recommend therefore that the Ministry of Industry review with the entrepreneur the pricing question and the marketing strategy, before any decision is made regarding approval.

As noted previously the devaluation of the Somali Shillings will add to the raw material cost and a consequence of this will be a new minimum annual cost of raw material of 19,963,456 Somali Sh. in year 1, or an increase of 1,121,504 Shillings over what was estimated in their study. This cost is it is assumed will be passed on to the consumer if margins are to be maintained. Without detailed market information we cannot estimate what effect this will have on the sales penetration.

Examination of the profitability of the existing bottler may also be revealing in this issue.

Section IV

The estimates for Raw Material costs are questionable in light of the recent currency devaluation. For example:

...
Raw Material per Case of Product (As estimated in the feasibility study):

Raw material cost per case is estimated at:

<table>
<thead>
<tr>
<th>Product</th>
<th>Cost Per Case (S долл.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola 300 ml</td>
<td>22.40</td>
</tr>
<tr>
<td>Fanta Orange 300 ml</td>
<td>25.46</td>
</tr>
<tr>
<td>Sprite 300 ml</td>
<td>22.66</td>
</tr>
</tbody>
</table>

Which is equivalent to 18,861,952 S долл. for 800,000 case production level. The recent devaluation of the Somali currency could result in a raw material cost per case:

<table>
<thead>
<tr>
<th>Product</th>
<th>Cost Per Case (S долл.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola 300 ml</td>
<td>23.89 (+6.3 %)</td>
</tr>
<tr>
<td>Fanta Orange 300 ml</td>
<td>26.62 (+4.4 %)</td>
</tr>
<tr>
<td>Sprite 300 ml</td>
<td>24.12 (+6.1 %)</td>
</tr>
</tbody>
</table>

As a consequence, the minimum annual cost of raw materials in a 800,000 case product year (assuming sugar and C.C. 2 is local) is estimated to be:

- 400,000 cases Coca-Cola $ 23.89 × 400,000 = 9,552,000
- 240,000 cases Fanta $ 26.62 × 240,000 = 6,388,800
- 36,000 cases Sprite $ 24.12 × 36,000 = 1,220,320

Total 300,000 Cases = Sh. 19,785,600

Provision for internal drinkages:

- 2 sampling (1 %) = Sh. 497,056

New Annual Cost = Sh. 19,983,456

Thus the recent devaluation could increase the cost of raw materials by about 1,121,504 S долл. (5.6 %). This is if raw materials cost were calculated in the feasibility study at 12.46 S долл./dollar.

It should be noted that the feasibility study indicates the beverage base and containers will be imported into Somalis. Furthermore, start-up delays could magnify the influence of a weakened Somali economy. /...
Section V

Plastic Crates.

A replacement allowance of 1% over 5 years for plastic crates seems unreasonably low. 3% per annum would be more likely.

Therefore container expenses could be under estimated.

Section VI

Inventory and Working Funds. (Based on our changed volumes)

Year - I

1) Concentrates / Beverage Base
 for 3 months inventory level:
 - 450 Units of Coca Cola x 1,446 = 650,700
 - 216 Units of Fanta x 1,114 = 240,624
 - 57 Units of Sprite x 1,446 = 82,422

2) Sugar 2 months requirements
 110 tonnes x 21,000/= = 2,310,000

3) Crowns 6 months requirements
 14,000 gross x 10.12 = 149,250

4) Filter paper 6 months requirements
 5,900 = 6.75 = 36,5825

5) Fills and lubricants (1 month requirement)
 125,000

6) Misc (Chemicals Stationery etc)
 =

7) Spare parts
 =

Total:

 5,242,321

Year - II

Add 30% for volume increase + 10% inflation factor

Total

 6,972,251

Year - III

Add 10% for volume increase + 10% inflation factor

Total = 7,336,278
Section VI

Factory Over Heads

A 25% contingency factor has now been added to the original estimates:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>157,000</td>
</tr>
<tr>
<td>Electricity</td>
<td>562,575</td>
</tr>
<tr>
<td>Fuel</td>
<td>1,250,000</td>
</tr>
<tr>
<td>Lube</td>
<td>75,000</td>
</tr>
<tr>
<td>Chemicals</td>
<td>105,200</td>
</tr>
<tr>
<td>Water Treatment</td>
<td>58,926</td>
</tr>
<tr>
<td>Refrigerants</td>
<td>34,697</td>
</tr>
<tr>
<td>C02</td>
<td>37,500</td>
</tr>
<tr>
<td>Detergents</td>
<td>75,000</td>
</tr>
<tr>
<td>Filter paper</td>
<td>29,920</td>
</tr>
<tr>
<td>Lab Equip, Maintenance &</td>
<td>286,000</td>
</tr>
<tr>
<td>uniforms</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,000,031</td>
</tr>
</tbody>
</table>

Section VII

A 25% CONTINGENCY FACTOR ADDED TO COSTS

A) Administration 678,500 So.3h
B) Sales and Marketing 190,000 So.3h

Section VIII

Peter Vehicle Expenses

A) Administrative Vehicles 288,000 So.3hs. (This was grossly under estimated and was increased by 100%)

B) Production Sales Vehicles 950,400 So.3hs. (3,0550 Sh/case) increased by 50% delivered.

Depreciation is not included in the above provisions.
Section IX

Salaries and Wages.

As stated 80% line efficiency in the first year is questioned. The following projection of costs is based on a 40% line efficiency i.e., 200 cases/hour, not 400 cases per hour.

\[300,000 \text{ cases} = 4,000 \text{ operating hours} \]
\[200 \text{ cases h} (50\% \text{ of the estimated hourly output}) \]

Wage cost per operating hours = 12,832 So.S.
Sales and Wages estimate is:

\[4,000 \times 12,832 \text{ So.S.} = 51,328,000 \text{ So.S.} \]

This could be an exaggeration somewhat, however it is prudent to be extremely cautious when estimating production on salaries and wages in a start-up situation.

We have estimated a production performance of 300 cases per hour for year 2, and reaching 400 cases per hour (50% line efficiency in the third year).

Year 2/3\text{467} \times 1,423 \text{ So.S.} = 4,937,000 \text{ So.S.}
Year 3/3\text{200} \times 1,521 \text{ So.S.} = 5,059,200 \text{ So.S.}

Auxiliary Benefits (Unchanged)

- Rental of Houses: 300,000
- Medical aid Expatriate Staff: 50,000
- Allowance of expatriate’s staff: 80,000
- Bonus Allowances: 153,400

Total: 563,400

/...
APPENDIX A

Total Cost of Investment with Depreciation (Ref Appendix A)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (£)</th>
<th>Rate</th>
<th>Annual Charge (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Land</td>
<td>1,200,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2. Buildings</td>
<td>9,100,000</td>
<td>4</td>
<td>364,000</td>
</tr>
<tr>
<td>3. Machinery</td>
<td>33,757,593</td>
<td>10</td>
<td>3,375,759</td>
</tr>
<tr>
<td>4. Motor Vehicles</td>
<td>2,650,000</td>
<td>20</td>
<td>530,000</td>
</tr>
<tr>
<td>5. Office Furniture & Fixtures</td>
<td>400,000</td>
<td>10</td>
<td>40,000</td>
</tr>
<tr>
<td>6. Coolers</td>
<td>100,000</td>
<td>20</td>
<td>20,000</td>
</tr>
<tr>
<td>7. Pre Operating Expenses (10 mo)</td>
<td>2,250,000</td>
<td>20</td>
<td>150,000</td>
</tr>
<tr>
<td>8. Inventory and Working Funds</td>
<td>5,242,831</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54,700,414</td>
<td></td>
<td>4,779,759</td>
</tr>
</tbody>
</table>

Cost of Containers

| a) Bottles | 6,552,600 | 9,672,000 |
| b) Crates | 3,120,000 | Total = 64,372,414 |

Say: 64,400,000 So. Sh.

Less Deposit from market

60,500,000

Therefore capital requirements appear to be 60,500,000 So. Sh.
which is higher than the 59,300,000 So. Sh. used in the feasibility study.
The additional 1,200,000 So. Shillings will be required as new capital funds.
Appendix

Calculation of Break Even Point
In terms of Case production

\[
\text{BEP} = \frac{f}{p-v} \quad \text{where} \quad f = \text{Fixed costs} \\
p = \text{Unit Sales Price} \\
v = \text{Variable unit cost.}
\]

Substituting data from year 3 (80% plant utilization)

\[
\text{BEP} = \frac{9,265,136}{40.68 - 31.9} = 1,055,255 \text{ cases}
\]

In terms of sales Revenue:

\[
\text{BEP} = F \left(\frac{f}{p-v} \right) \\
= 40.68 \left(1,055,255 \right) \\
= 42,927,773 \text{ Shillings.}
\]

Therefore the plant would need to produce 1,055,255 cases annually to break even, or generate sales equivalent to 42,927,773 So. Shs. to cover its costs.

Appendix

Annual rate of return on promoters equity Capital:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Profit after Tax</td>
<td>(6,121,379)</td>
<td>(382,796)</td>
</tr>
<tr>
<td>Equity Capital</td>
<td>(23,173,703)</td>
<td>(23,173,703)</td>
</tr>
<tr>
<td>Rate of Return %</td>
<td>(26.4)</td>
<td>+ 1.65</td>
</tr>
</tbody>
</table>

Profit and Loss Projection

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>Coca Cola</th>
<th>Sprite</th>
<th>Fanta</th>
<th>Total Year 1</th>
<th>Total Year 2</th>
<th>Total Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case sales</td>
<td>300,000</td>
<td>50,000</td>
<td>150,000</td>
<td>500,000</td>
<td>650,000</td>
<td>800,000</td>
</tr>
<tr>
<td>Extra Territory</td>
<td>180,000</td>
<td></td>
<td></td>
<td>30,000</td>
<td>90,000</td>
<td>390,000</td>
</tr>
<tr>
<td>Basic Territory 41/81 Case</td>
<td>12,540,000</td>
<td>2,090,000</td>
<td>6,270,000</td>
<td>20,990,000</td>
<td>27,170,000</td>
<td>33,440,000</td>
</tr>
<tr>
<td>Extra Territory 38/80 Case</td>
<td>6,984,000</td>
<td>1,145,000</td>
<td>3,492,000</td>
<td>11,640,000</td>
<td>15,132,000</td>
<td>18,624,000</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>19,524,000</td>
<td>3,254,000</td>
<td>9,972,000</td>
<td>32,740,000</td>
<td>42,302,000</td>
<td>52,064,000</td>
</tr>
</tbody>
</table>

Direct Production Expenses

<table>
<thead>
<tr>
<th>Category</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Materials</td>
<td>19,511,586</td>
<td>2,228,680</td>
<td>2,511,200</td>
</tr>
<tr>
<td>Container Exp.</td>
<td>21,495,312</td>
<td>27,008,165</td>
<td>33,237,761</td>
</tr>
<tr>
<td>Marginal contr.</td>
<td>11,044,688</td>
<td>15,295,835</td>
<td>18,826,239</td>
</tr>
<tr>
<td>Sub Total</td>
<td>32,531,886</td>
<td>27,534,025</td>
<td>36,084,203</td>
</tr>
<tr>
<td>Overhead Expenses</td>
<td>2,880,031</td>
<td>2,480,031</td>
<td>2,538,317</td>
</tr>
<tr>
<td>Gross Profit C/Fwd.</td>
<td>8,164,654</td>
<td>12,813,804</td>
<td>16,287,922</td>
</tr>
</tbody>
</table>

Operating Expenses

<table>
<thead>
<tr>
<th>Category</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>678,500</td>
<td>742,500</td>
<td>809,325</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td>190,000</td>
<td>258,000</td>
<td>300,000</td>
</tr>
<tr>
<td>Inter Vehicles</td>
<td>1,238,400</td>
<td>1,310,000</td>
<td>1,427,900</td>
</tr>
<tr>
<td>Sales & Wages</td>
<td>5,132,800</td>
<td>4,937,008</td>
<td>5,059,200</td>
</tr>
<tr>
<td>Sub Total</td>
<td>7,239,700</td>
<td>7,247,508</td>
<td>7,586,425</td>
</tr>
<tr>
<td>Depreciation</td>
<td>4,779,759</td>
<td>4,779,759</td>
<td>4,779,759</td>
</tr>
<tr>
<td>Operating Profit (Loss)</td>
<td>(3,854,802)</td>
<td>2,467,749</td>
<td>2,816,666</td>
</tr>
<tr>
<td>Interest & Bank Charges</td>
<td>2,266,577</td>
<td>1,702,157</td>
<td>1,137,735</td>
</tr>
<tr>
<td>Profit (Loss) before tax</td>
<td>(6,121,379)</td>
<td>765,592</td>
<td>1,678,931</td>
</tr>
<tr>
<td>Provision for tax 50%</td>
<td>Nil</td>
<td>382,796</td>
<td>839,466</td>
</tr>
<tr>
<td>Net Profit (Loss)</td>
<td>(6,121,379)</td>
<td>382,796</td>
<td>839,466</td>
</tr>
</tbody>
</table>

APPENDIX
8.1 Preliminary report - I.E. Project DF/SOR/01.

Extracts of the Preliminary report are reproduced here in:

This document is a tentative work plan for an Industrial Engineering assignment Project DF/SOR/01/013 wherein UNIDO acting as executing agency for UNDP is providing strength to the institutional and staff capabilities of the Ministry of Industry. Specific objectives of the work planned will be through direct assistance to improve the performance and management of priority public sector industrial enterprises.

The Project envisages a 5 Phase Project with about 64% of the available time being directly involved with the factories. The Project commenced on 20th June, 1982 and is scheduled to complete by 27th June, 1982.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analysis, evaluation, set direction, and operational Audits.</td>
</tr>
<tr>
<td>2</td>
<td>Operational audits, and project selection.</td>
</tr>
<tr>
<td>3</td>
<td>Organize and undertake training.</td>
</tr>
<tr>
<td>4</td>
<td>In plant industrial engineering.</td>
</tr>
<tr>
<td>5</td>
<td>Following-up, monitor and maintain direction.</td>
</tr>
</tbody>
</table>

It is predictable that the different problems, as discussed and highlighted by previous experts will require fairly intensive attention over a protracted period if lasting improvement is to result. In order to do this it is proposed that the number of client companies does not exceed three (3) and may be limited to two (2).

The substantive planning section of this document attempts to formulate on a planning horizon of one year (i.e. concluding in June 1983) for the 5 phase programme.

* The initial plan visits conducted in July by Mr. Rutter confirms these concerns, and indicates that a greater percentage of time needs to be allocated to the training component, than was originally anticipated. Furthermore assistance in matters important to the Ministry of Industry but falling outside of this specific programme has caused effort to be deflected away from the main thrust.

An example of this is, our examination of SMH Sugar highlighted problem areas which led to the Minister requesting further detailed review over a number of weeks.
PROCEDURES.

In conducting phase 1 and 2 it is proposed that five (5) companies be subjected to an operational audit by Mr. Rutter, and his counterpart engineer. This will entail a review and appraisal of the effectiveness and efficiency of factory operations and operating procedures. The O.A. carried with it the responsibility to discover and inform top management of operating problems, but its chief purpose is assisting management to discuss the problems that the Industrial Engineer can help resolve. As such the O.A.'s will be a fundamental input to the assignment.

This approach, which is essential to the identification of problem areas for industrial engineering remedial action has side benefits. Such reports will place in the hands of the Ministry of Industry and Company management a bird's eye view of the operation and the administration processes that are specially beneficial to operating and planning personnel. It is in practice primarily a protective and constructive tool dealing with the evaluation of controls. Phase 2 will itself continue with the operational audits and will lead to the selection of 2, or may be 3, companies for in-depth assistance. The final selection will be undertaken through a consultative process between UNIDO, the Ministry of Industry and the Companies. Phase 2 will conclude with identification of specific Industrial activities for the specified Companies and will conclude on 29 November, 1982.

Phase 3 will entail the training of selected personnel in certain analytical tools of Industrial Engineering. In particular it is expected that training in Work Simplification and Activity Sampling will be given.

Phase 4 will follow. In it specific systems improvements will be identified, designed and installed. There will again be a practical training component to this phase. This we term the implant engineering programme. It will conclude on 31st May, 1983.

The final, and fifth phase, is intended to place with the local management and the Department of Industry the responsibility for operating and monitoring introduced system improvements.
1. Source Project Document - Assistance to the Ministry of Industry in improving the performance of Industrial Enterprises – Number D/SCI/81/013

The methodology which Mr. Rutter proposes to adopt has been based on the review of previous work undertaken by the Project.

The following documents have been used as key sources to this work planning proposal:

Review of these 7 reports along with several additional documents indicated that problems considerably broader than solely production related activities exist and may require resolution before industrial engineering improvement is achieved in any lasting manner.
3.2. TRAINING WORKSHOP, CIGARETTE AND MATCH FACTORY

1. **Subject:** Methods to upgrade the skill levels of Maintenance personnel at the Cigarette and Match Factory, Mogadishu.

2. **Introduction** In order to combat the low level of journeyman skills present among the maintenance personnel an in-house training workshop is proposed.

 This facility is intended to be a permanent/institution, operating on a daily basis at the factory.

 A skilled instructor in workshop and repair practices would manage the daily training activities.

3. **Background** During the UNICEF Project Team's briefing on the preventive maintenance system being implemented at the factory concern was expressed over the low level of trade skills exhibited by the maintenance personnel.

 The development of the preventive maintenance programme highlighted the problems, and recognized that future installation of sophisticated making and packing machinery planned for late 1983 will put increased pressure on mechanical/electrical trade skills.

 Presently there are 80 mechanics and assistants at the Factory. At least 75 of these persons require further training.

4. **Proposal** A small practical training workshop facility is proposed wherein up to half a dozen persons could receive trades at any one time.

 Factory management recommend that personnel attend the Workshop on a part-time, intermittent basis, arranged so as to not interfere with production activities. The Management envisages individuals attending the course for 2 hours a day twice a week. Training schedules would however be one of the initial responsibilities of the Chief Workshop Instructor. Initially training will be in sound workshop practices in mechanical maintenance and repair. This would be broadened to include electrical trades training in due course.
8.3 Re-equipment Proposals Fumas Cigarettes

CIGARETTE AND MATCH FACTORY

MCCADISHU - SOMALIA

Re-equipment, Paras Cigarette Making and Packing Lines - 1983

BACKGROUND

One of the most important public sector enterprises in Somalia is the Cigarette and Match Factory located in Hargeisa. In 1980 the Factory increased its annual cigarette making capacity by 250 tons to 576 tons with the introduction of a Holmes Cigarette making and Focking combination. This equipment is used for the manufacture of the Galoyer Brand of Cigarette and has proven most satisfactory.

A second brand of Cigarettes known as Paras, has been produced on Chinese Equipment some of which was manufactured in 1930. This equipment besides being slow and inefficient has in recent years become very unreliable with 90% of all factory down time occurring on it. Wastage through product damage is correspondingly high. A further worry is that spare parts are now no longer available from any source.

Management has recommended the placement of the 13 Chinese making and packing machines by 2 Holmes Mark 5 SF Cigarette Making combinations and 2 Focking HLF combinations.

Negotiations have now been completed with the equipment manufacturers Holmes Ltd of the U.K.

A quotation satisfactory to the Cigarette and Match Factory has been accepted. The cost of the equipment including all charges, such as for freight, installation and spares is US $1,990.190. Delivery is promised for 10 months from the date of the Letter of Credit being opened and confirmed by a U.K. Bank.

The arrangement is a most satisfactory solution to the productivity problem on Paras' production, and coupled with the industrial Engineering initiatives undertaken at the factory it should result in greatly improved efficiency.

/...
Unfortunately there is a problem with raising the necessary hard currency to pay for the new equipment. Although the company has adequate capital in Somali currency, assistance is requested in finding some way to overcome the shortage of hard currency.

QUOTATION

1. **Equipment**
 Including spares and installation C F Mogadishu.

2. **Installation Terms**
 2. HPL 2 Ringo lid packers
 2. Link up bands
 2. 53 Drawer Boxes
 2. HPL 4 12 Overwrappers
 Total 2 Combinations FOB U.K. Port
 Freight
 Total 2 Combinations C F Mogadishu by Sea
 Freight
 Installation
 Spares
 Total :
 US $ 1,121,744-00
 US $ 1,136,742-00
 US $ 27,664-00
 US $ 44,072-00
 US $ 1,294,748-00

3. 2 NK 8 SH Cigarette Machines
 2 FA 8 M Plus Assemblers
 2 Hand Catcher bands
 Total 2 Combinations FOB U.K. Port
 Freight
 Total 2 Combinations C F Mogadishu
 by Sea Freight
 Installation
 Spares
 Total :
 US $ 674,440-00
 US $ 14,038-00
 US $ 688,478-00
 US $ 30,540-00
 US $ 62,644-00
 US $ 781,712-00

4. Total Invoice Price. ... US $ 1,990,190-00

5. Delivery 10 months from date of Letter of Credit opened and confirmed by U.K. Bank.
6. This offer which has been unchanged since 1980 will remain valid till December 31, 1983.

In addition to the capital equipment other engineering cost will be increased in Civil Works to be the building in the installation of the appropriate service and the provision of essential air condition. The Factory management have at this time estimated a further US $ 250,000 for such work.

CONCLUSION

The need for this equipment is vital. The condition of the Chinese Packing Equipment which had broken down for approximately 800 hours in 1982 (3 of all available factory hours) is such that replacements are essential.

Operations Audit Questionnaires:

This questionnaire was developed and used by Project 57/SC/7/31/019 to review the situation in the manufacturing concerns at the commencement of the Project. They are reproduced herein because they provide a sound and proven tool with which to gain an understanding of the operational strengths and weaknesses of a manufacturing organization.

Questionnaires were completed for the following companies:

- SAI Sugar -- Jouhri
- Cigarette and Match Factory -- Faisalabad
- Semalax Textile -- Rawalpindi

The collected data is on file at the Ministry of Industry, Islamabad.
PROJECT

AUDIT CHECKLISTS

OPERATIONAL AUDIT CHECKLISTS

ADMINISTRATION AND MANAGEMENT

1. Is there a clear statement in writing setting out the objectives - For Company
 For Departments

2. If yes, have objectives been made known?
 If yes, formally ________ Informally ________

3. Are these Goals / Objectives understood and accepted by
 Managers ________ Supervisors ________ Staff ________

4. Are methods used to meet objectives sound ________

5. Is allocation of Monetary, Physical, Staff Resources in
 keeping with meeting the objectives ________

6. Has each Department been formally introduced to its operating
 objectives ________

7. Are key business decisions made on basis of demonstrated
 needs of the business ________

8. Is Management primarily market, - Customer - Production
 Oriented ________

9. Do Company Financial statements provide information adequate
 to management needs ________

10. Is Financial information circulated to all management who
 need it to fulfill their obligations ________

11. Has activity analyzed ever been performed in the Company ________

12. Has a systematic study ever been carried out ________
 Determine what is needed to get product out ________

13. Do Executives have a clear sense of their General Responsibilities ________

14. Does top management delegate ________

15. Are systems / Procedures Generally Documented ________

16. Does Company maintain how to documents ________

17. Does company have consistent Rational Compensation Plan ________
Has the role of each department been defined in writing.
2. Has the role been communicated to the other departments.
3. Is there agreement between you and department manager on this role.
4. Has the authority been delegated to carry out role.
5. Have you specified how departments performance is to be measured.
 1. Within budget.
 2. Recovery of costs.
 3. Of people.
 4. Feedback from other departments.
 5. Personal judgement.
 7. Schedule Performance.
 8. Achievement of agreed standards.
 9. What happens in case of non accomplishment.
10. How satisfied are you with individual departments
 and with company's overall performance.
18. Are Annual Performance Personal appraisals, Given_______
 If yes that method employed_______

19. How is management Technical staff appointed.

21. Will the loss of any one executive severely affect the
 Company's Affairs.
 If Yes ______ Identify position _______

22. Does Company measure and rate Managerial performance. If
 yes what factors are used.

 I Profits.
 II Expenditure - V - Budget.
 III Production - V - Plan
 IV Etc.

23. Is there evidence of crisis management style or it major
 emphasis on Problem Prevention.

24. Are problems evaluated for their profit effect and tackled
 in that order of priority.

25. How are Budgets constructed.

26. Are regular Budget performance meetings held. If yes
 who attends.
 Minutes kept of proceedings.

27. Does management (Senior) know that its investment return for Last
 Financial Period was (Net income/Net worth = %)
 If no, compute this ratio for key parts of Company.

28. Does Management (Senior) know the return on gross assets.

29. If R O I is inadequate in comparison with Prime Rate
 what clues have Management to improve ROI.

30. Are repetitive decisions made candidates for standard procedures.
2. **PLANS AND PLANNING**

1. Has Company a formal Planning Activity.
2. Is planning undertaken on a scheduled basis.
3. Where do planners fit in organization.
4. Who instructs the planners. How ______
5. Are production and administrative supervisors consulted in Planning process.
6. Are developed plans reviewed by an impartial Authority.
 If Yes -- who, when and for what purpose.
8. Have priority been attached to plans.
9. Have matching controls been established, for each plan to monitor progress.

LONG RANGE (STRATEGIC) PLANS

10. Does Company have written, defined current Goals and objectives for 3 - 5 years ahead.
11. Are the objectives and the Goals challenging and realistic.
12. Has responsibility for attainment of the Goals been clearly and individually assigned.
13. Were those to whom Goals were assigned involved in their Development.

SHORT RANGE (TACTICAL PLANS)

14. Have sub objectives been set for each Organizational unit.
15. Are the short Range Goals compatible with the long range ones.
16. Have Goals / Objectives been communicated in writing.
17. Have detailed plans/time schedules been set for attaining the objectives.
18. Does projections for project expenses / income fit the Tactical Plans.
19. Do cash flow projections provide proper guides to action in handling capital structure and liquid resources.
 If yes how is this co-ordination achieved.
3. **BUDGETS**

1. Does the company prepare Annual Budgets.
2. Are Budgets formed after opportunities for cost improvement are reviewed.
3. Have written Budgets for the Plans been prepared - do these consider manpower needs, equipment, spare parts, Operating Plant, Expenses and Income.
4. Are the Budgets formally challenged. If so, how.
5. Are Budgets subject to Revision.
6. How is Realism (Leanness) of Budget assessed.
7. Are Budget variances explained by the appropriate responsibility Centre Manager.
8. Does Management rely on the Budget as opposed to making internal adjustments to compensate for inherent errors.
9. Are standards measured used as the basis for Budget Development.
10. Is there a responsible company official responsible for Budget Planning and Development.

4. **CONTROLS AND CONTROLLING**

1. Does a list of active controls exist if yes append to your Questionnaire.
2. If no, can controls be identified. Who has the control responsibilities (By Sections).
3. Does formulation of plans precede formulation of related controls. If not how are efficient controls revised.
4. Does each control have a feedback feature (Describe).
5. Have existing controls been documented in:
 - Procedures
 - Descriptions
 - Flow Charts.
6. If no, is such documentation planned.
7. Has responsibility for formal periodic review of controls been assigned to anyone (List).
8. Are these controls over:
 - 8.1 Cash Flows.
 - 8.2 Accounts Receivable collection...
8.3 Accounts Receivable Aging.
8.4 Bad Debt Write-off.
8.5 Inventory Level.
8.6 Inventory Turn-over
8.7 Inventory Obsolescence.
8.8 Fixed Asset Acquisition
8.9 Equipment Acquisition including small Tools
8.10 Research and Development Expenditure.
8.11 Production Hours (Overtime working authorisation)
8.12 Payroll Control of new hirings.

ORGANISATION

1. Has company differentiated (by functions) structure.
2. Does company know its activity needs.
3. Obtain copy, or draw, organisation structure.
4. Has activity analysis ever been performed.
5. Has a system study of what is necessary to get product out of door been done.
6. Are Management positions covered by Job Descriptions. If yes obtain copies.
7. Date Job Descriptions.
8. Could any Functions be combined.
9. Could any Department / Section be eliminated.
10. Have responsibility and authority been assigned.
11. Does any Manager have more than 6 persons reporting to him.
12. Does any Manager have 2 or less reporting to him. Identify.
13. What staff positions exist.
15. Are any key staff retiring in next 2 years. Identify.
16. Has any plans for their successors been made.
17. Is the wage and salary programme tied in with the Organisation.
18. How prominent is production Management positions in structure.

/...
10. Is there a formal Training Policy and Programme.
 If yes aimed at what groups and with what objective.

MANPOWER SURVEY

11. What Training Techniques are in use.
12. Are production personnel trained.
14. Is management involved with Selection Training
 If so in what way
15. Do supervisors give on-the-job Training
16. Is there an Apprentice or Technician Development Programme
17. Outline hiring determination practice

MANPOWER USE

18. Do employees participate in in-service training.
19. What are Disciplinary procedures.
20. Is there a Trades Union.
21. What is grievance procedure.
22. What is incidence of grievance to work stoppages.
23. Who is responsible for observance/maintenance of adequate and legal working conditions.
24. Are new employees on probation - Describe
25. Are reference checks made on key new employees.
26. Are health checks made on new employees.

PERSONNEL ADMINISTRATION

27. Does company maintain adequate personnel files.
28. How does company control establishment levels.
29. Are Job Descriptions employed.
 For what jobs.
 Do Job Descriptions follow standard format.
30. Are there established personnel policies.
31. Are supervisors informed of personnel policy changes before they become public.
RESEARCH AND DEVELOPMENT

1. Is there a formal / informal approach to R & D.
2. Can all managers input to R & D.
3. Does company receive research based economic, industry and engineering reports From Industry / Professional Sources.
4. Does company have ongoing contract arrangements with licensing opportunities. Product opportunities, Joint Ventures, Technology sharing etc.
5. Does company sponsor skill improvement.
 If yes ________
6. Has R & D effort produced anything of value.
8. Are Projects Budget controlled.
9. Obtain Resumes of R & D Staff.

PERSONNEL

General

1. Are human relations considered important.
2. Detail the organisation of personnel function as planned and as actual.
3. Is responsibility for the basic formulation of the personnel programme a Corporate Management Function.
4. Do other Departments understand Role and Relationship of the Personnel Department.

MANPOWER SUPPLY

5. Is there a Manpower Planning Document. Does it identify specific skills.
6. Is there adequate skills at hand. If not, what is being done to rectify problems.
7. Is Performance measured against known standards.
8. Is performance appraisal of existing and supervision conducted.
9. Is there a formal promotion policy. /...
10. Is there a formal Training Policy and Programme. If yes, aimed at what group/s and with what objective.

PERSONNEL - MANPOWER SURVEY

11. What Training Techniques are in use.
12. How are production personnel trained.
13. Are operations people involved in determination of training needs.
14. Is Government involved with Selection Training
 If so, in what way.
15. Do supervisors give on-the-job Training.
16. Is there an apprentice or Technician Development Programme.
17. Outline hiring/termination practices.

MANPOWER USE

18. Do employees participate in induction training.
19. What are Disciplinary Procedures.
20. Is there Trades Union.
21. What is grievance procedure.
22. What is incidence of grievance or work stoppages.
23. Who is responsible for observance and maintenance of adequate and legal working conditions.
25. Are reference checks made on key new employees.
26. Are health checks made on new employees.

PERSONNEL ADMINISTRATION

27. Does Company maintain adequate personnel files.
28. How does Company control establishment levels.
29. Are Job Descriptions employed.
 For what jobs.
 Do Job Descriptions follow standard format.
30. Are there established personnel policies.
31. Are supervisors informed of personnel policy changes before they become public.
32. Are company goals and objectives simply explained to employees.
33. Is there a company publication, info sheet or similar publication.
34. Does the company have an Employee Benefit Programme.
35. Are wages reviewed for equity.
36. Are wages incentives employed.
37. If yes do they serve as an incentive to greater productivity.
38. What are overtime practices.
39. Detail overtime costs, ratio and trends.
40. Is there a pay scale for grades of work.
41. Are management salaries reviewed and periodically adjusted.
42. Are outstanding service/performance personnel honoured.

CLERICAL OPERATIONS
1. Is staffing tailored to work load.
2. How was staffing level determined and when.
3. Is recruitment under one person's control.
4. Turnover incidence.
5. Have flow charts been made of clerical operations.
6. Is there a formal organisation chart, if yes obtain copy.
7. What training takes place.
8. Are one write systems employed.
9. Are records protected from fire/theft.
10. Do clerical operations appear free of duplication.
11. Has layout of office/work stations been efficiency planned.
12. Is there conference facilities.
14. List office equipment work saving devices copiers/word processors (Communication systems)

MANUFACTURING

GENERAL
1. What does factory manufacture.
2. How many employees. How many under your control
I. **Plant Production**

Describe your problem:

2. **Plant production for Employee**
 - For unit or wage.

3. **Describe your problem**
 - Per Unit of Investment areas.

4. **What on going activities exist to improve efficiency of production.**

5. **Does production complaints of inadequate or complex product specification.**

6. **Are there long standing high cost production situations.**

7. **List outstanding unresolved engineering problems.**

8. **Does Accounting give Manufacturing product costs on a frequent, systematic reporting basis.**

9. **Is reporting adequate, accurate, useful.**

10. **Are such reports analyzed and used by Production Management.**

11. **Is material cost (percent of production cost) known.**

MANUFACTURING:

PRODUCTION CONTROL

11. **Are Sales forecast communicated to production.**

12. **Are related schedules developed.**

13. **Are schedules related to inventory situations. If Yes. Explain the method.**

14. **Obtain copy of Production Plan. Append to Questionnaire.**

15. **How accurately does production correlate to production plan. Are variances known, highlighted and analyzed.**

16. **Is up to date / accurate vendor or procurement load times related to production schedules so that need materials / parts are readily available to production. If this is unsatisfactory amplify and explain herein.**

17. **Is delivery given appropriate importance in vendor selection.**

18. **Does Planning Product work load for each machine in sufficient detail to allow forecasting of Manpower Machine priorities.**

19. **Have production standards been established to facilitate correct machine loading and minimize bottlenecks.**

/...

22. If component parts and sub-assemblies are produced, their schedules tie-in with end product schedules.

23. Is there a work order system?

24. Are shop #s used, are written work order used.

Obtain copy 1 Chart Routing.

25. Are work orders ever started with materials and components unavailable.

26. Rate its importance.

27. Are schedules checked for materials availability before release to production.

28. Are materials listed on work orders.

29. Do work orders indicate standard times for processing or assembly.

30. If yes, how are standards developed.

31. Is there a continuous program to standardize, review and amend such standards.

32. Does work order system provide documents for cost control of Job Pro res.

Machine Repair Records and Close-out control upon completion of job.

33. Is actual production compared with planned production.

34. Are make or buy decisions formalized.

35. Is Production / Engineering involved.

36. Are supplies of commodity used, Parts Consolidated.

37. Is a record of scrap, wastage and rejects maintained.

38. Is there a value analysis program.

39. Are idle time reverts prepared for machines and men.

40. Is idle time cause identified.
39. Have make or buy decisions been reviewed in the past year.

40. Is there a method of following a product through the Factory.
 If yes What is it. Obtain copies of Documentation

OPERATIONS

1. Does each production step or manufacturing operations appear essential.
2. Can any be eliminated or combined.
3. Are there delays or idle time that can be reduced.
4. When materials are checked for accuracy and completeness and quality can sampling procedures be used.
5. Are economic lots sizes known.
6. If Yes, are Fixed Costs (S.t-up time etc.) reduced to efficient levels.
7. Are Stock-outs a Factor.
8. Are slow moving inventory items known.
9. Are those responsible for plant capacity scheduling are of capacities for each product/ part capacity.
10. What is level of product returned. Is the cause investigated.
11. Is excess labour recorded.
12. Is materials handling costs examined and improvements considered.

FACILITIES AND EQUIPMENT

13. Is manufacturing area needed as laid out.
14. Is it orderly clean and pleasant
15. Are outside areas orderly.
16. Are aisles, storage areas orderly
17. Are safety precautions in evidence.
18. Are efficiency tests on machines comparing designed output to actual carried out.
19. Are scales checked.
20. Is Building height efficiently used.
21.a Is warehouse well laid out / organised / neat
22.a Is lighting level appropriate to activity.
21.b Are repetitive actions reviewed from stand point of Automation / Mechanization.
22.b Washroom Lavatories - Condition.

PRODUCTION PERSONNEL ORGANIZATION.

1. Is production manager included in the planning group.
2. Does Production Manager plan/ liaise with sales.
3. Must Foreman have authority of production manager to authorise overtime working.
4. What is ratio of supervisors to Hourly Workers by individual section in production and ancillary areas.
5. Do machine operators or key machines have a Back up Operator.
6. Are hourly production workers Adequately supervised on unusual working shifts.
7. How are Supervisors selected.
 Trained,
 Promoted
 Disciplined
8. Indicate Turn Over level of Hourly paid workers.
9. How are production employees Trained
 Re-Trained.
10. Is there a set procedure for obtaining Tools/ Materials
12. Are production records checked against issued materials to ascertain disposal of material.
13. Is shipping / receiving under constant surveillance.
14. How effective is plant security.
15. Are employee searches ever carried out.
 If Yes - How Frequently, Randomly?
16. Is there an I.E. on Staff.
17. If no, are Management interested in / or Planning such an appointment...
10. Are Engineering projects prioritized.
 If so, By whom On what basis.
11. Is CPM/PERT used as a Control.
12. What is Ratio of Engineering Overtime to Regular Hours on
 projects / Service work.
13. How are Engineering Cost records maintained.
14. Does Engineering participate in preparation of Plant Capital
 Expenditure requirements.
15. Are Engineering costs charged back to user.
17. How flexible can Engineers be in accepting random assignment
 How is this controlled.
18. Does Engineering produced a monthly Project
 Status Summary / any Periodic Summary.
 - Obtain samples.
19. Are closed out Project cost reports analysed.
 - By whom.
20. Is there Review of proposed Projects prior to authorization
 by a qualified group. Do they determine Cash needs.
 Profitability
 Product Life.
 Value to Company.

PRODUCT ENGINEERING

1. How does marketing liaise with product Engineering.
2. Is there a review procedure for determining manufacturing
 parts obsolescence.
3. Is Engineering officially represented at product planning
 meetings.

PLANT ENGINEERING

1. Does Engineering department serve Plant Engineering needs.
2. Are equipment purchases, material selection, project design
 influenced by first cost decision (Capital Exp).
ENGINEERING

GENERAL

1. Are Engineering Plans Developed.
 By whom.
 For what purpose.

2. Are such Plans integrated with Corporate Plans.

3. Is there a Budget for Engineering.
 Is it formally Reviewed.
 By whom.

4. Is Engineering Budgets Costs Compared with Production costs.
 If yes, What is Trend.

5. Does Engineering Service have cost centres allocated, Reported, and Monitored.

7. Are Engineering Charges expenses or capitalized.

8. Is Engineering permitted to specify manufacturers vendors.

9. Is there a clear policy statement for Engineering.

10. Does Engineering and Its clients understand the Engineering Objectives Are they reasonable.

ENGINEERING CONTROLS

1. Are Project Estimates:

 Developed

 Cost

 Time

 Start / Finish

 Materials.

2. Who is responsible for such estimates

3. Does Estimator / Supervising Engineering utilize std. costs

4. Are Standard / Actual Costs compiled and scrutinized.

5. Have recent estimates been considered satisfactory.

6. Do minor Plans have controls devised for them.

7. Is non Project work covered by Open Work Order #/s.

8. Are Project status reports prepared.
3. What is relationship of Plant Engineering to company Engineering Management.

4. Are machine and process modifications subject to review prior to modification - if so, by whom.

5. Is a machine and equipment standardization programme in effect or contemplated.

6. Do plant layout plans exist. Where are they.

7. Is there a Technical Library including catalogue Tech. Spees etc.

8. Is there an Engineering Filing System.

9. Is there reproduction Equipment for Engineering

Inventory Control

1. Obtain value of inventory by general category

 i.e. R.M.

 Work in Progress.

 Finished goods.

2. Are all material purchases delivered to control stores as opposed to directly to production / engineering service units.

3. Is one person responsible for inventory management.

4. Are inventory turnover ratio calculated. If Yes, what are they?

5. Are perpetual inventory records maintained.

 for RM

 Work in Progress.

 Finished stock.

6. Are inventory records maintained in bins or stock areas.

8. Are vendor counts double checked by receiver.

9. Can any stock items be: Standardized, Reduced, Eliminated.

/...
10. Are perpetual inventory records checked by periodic physical stock checks - If Yes, what was data and counts of previous 2 checks. Ask for evidence.

11. Are following classes of inventory under accounts control.
 a) Consignments out
 b) Materials owned by Company but in hands of suppliers, other processors etc.
 c) Consignment.

13. How is storage capacity known, calculated and utilized.

14. Are storage area aisles clear, smoothly paved and well lighted.

15. Are storage areas clear and well lit.

16. Are key storage areas adjacent to majority user. Is it capable of change.

17. Are shipments ready for truckers when they arrive.

18. Is there a schedule for regular stock taking.

19. Are stores cleaned out regularly.

20. Is there an adequate supply of fire extinguishers.

21. What mechanical handling aids exist in the stores. Are they adequate, safe, in good working order.

22. Outline stores control system.

Materials Handling and Storage.

1. Is MH a major activity - If no go to next section.

2. Is MH a specialized section.

3. Is MH a activity of production interest.

4. Has a MH study ever been carried out.

5. Is there any indication of haphazard and/or excessive accumulation of stored material.

6. List Mobile MH equipment by type and task it performs.

7. Are materials consumed excessively. If yes, what evidence is there.

8. Are identical items stored in one location in order to
aid location time.

9. Are fast moving items located near user.
10. What scope is there for palletizing
 conveyor handling
 gravity feeding.

11. Is incoming material documented
 checked
 Routed
 Recorded.

Engineering Department - ORGANIZATION

1. Is department formally structured.
 Get copy of Organization chart.

2. Is it a functionally distributed, or a departmentally
distributed organization.

3. Is division, between engineering, production, and quality
 control clear.

4. What is utilization of engineers and related technical staff.
 In there staff turnover - Details.

5. Are positions covered by job descriptions.
 If yes. Obtain Copies.

6. What is ratio of engineers (qualified) to engineering staff.

7. Are there specialized engineering groups.
 If yes list them.

8. Do engineers ever serve as project managers within the
 Company.

9. What provision is made for technical training including
 exposure to production, quality control marketing and accounting
 problems.

10. What provision is made for recruitment of engineering
 skills for future needs.

/...
M A I N T E N A N C E

1. Does Company have enough facilities and equipment to warrant a formal maintenance programme.

2. Is there a formalized maintenance programme.

3. Who controls the maintenance programme.

4. Does M.P.E. provide servicing on a planned basis i.e. Does maintenance performed in a timely manner prevent breakdowns.

5. Are maintenance, labour and material expenses charged directly to the departments in which the work is performed.

6. In production department encouraged to report impending problems. Are they followed up. If yes - then how?

7. Is there a schedule for routine maintenance.

8. Has maintenance been studied to highlight priorities and avoid over maintenance.

9. Are histories kept for big equipment.

10. Is plant lubrication properly controlled and regularly scheduled.

11. Are breakdown reports prepared. Who are they circulated to and how frequent.

12. Is there a daily maintenance work force report indicating the disposition of the maintenance men.

13. What is a % of overtime for maintenance workers.

14. Is an up to date equipment record file kept in the maintenance department.

15. Does maintenance have its own budget.

16. Is % of actual hours worked periodically compared with planned.

17. What is % of plant down time for maintenance reasons (Is it under 10%)

18. What is stores withdrawal procedure for maintenance Personnel.

19. Does production department have to control the amount of maintenance carried out on overtime.
20. Are any other departments (than maintenance) charged with inspection responsibility.

21. Who has final say on policies on hiring, firing, promotion, and demotions within the maintenance department.

22. What training has maintenance personnel received.

23. Can ratio of emergency to planned maintenance be determined.

24. Are maintenance studies for production equipment agreed in advance between maintenance and production departments.

25. Are maintenance check lists used.

26. Is performance of preventative maintenance jobs inspected on a random sample basis by maintenance supervisor.

27. Do foremen inspect each job as it is completed.

28. Has a maintenance productivity study ever been made.

29. Has maintenance ever been subjected to I.E.

30. Is procedure for maintenance order spare parts, supplies etc.

32. Is maintenance consulted in the setting of inventory of spare parts levels.

33. Are tool and similar items adequate. Readily at hand, in good condition.

34. Who carries responsibility for hand tools. Are they periodically checked.

35. Is there a standardization programme for spares, supplies and tools.

36. Do maintenance supervisor ever meet together to discuss performance. Do they meet from time to time with other management?

37. What are the high cost, long standing maintenance situations. Does this indicate unsolved engineering problems.

PROPERTY PLANT EQUIPMENT

1. Are plant ledgers maintained.

2. If Yes are they balanced annually with general ledger controls?
3. Is a periodic inventory of plant items undertaken (by whom)?
4. What insurance cover? Are periodic appraisals carried out for insurance purposes?
5. Has Company experienced advisability of sale and leaseback of property, plant and equipment to obtain cash. Is this possible in a public company?
6. Are depreciation policies reviewed annually.

<table>
<thead>
<tr>
<th>Factory</th>
<th>Major Outputs</th>
<th>Sub Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PLANNED MAINTENANCE PROGRAM</td>
<td>Reduce down time.</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td>Demonstrate cost benefit.</td>
</tr>
<tr>
<td></td>
<td>Test (with the mechanics)</td>
<td>Train Somalis in system and Maintenance Practices.</td>
</tr>
<tr>
<td></td>
<td>Train</td>
<td>Have them operate system.</td>
</tr>
<tr>
<td></td>
<td>Install</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRODUCTION ENGINEERING</td>
<td>Demonstrate potential.</td>
</tr>
<tr>
<td></td>
<td>Study Methods</td>
<td>Train Manager in assessing productivity.</td>
</tr>
<tr>
<td></td>
<td>Develop Improvements</td>
<td>Have Manager apply knowledge.</td>
</tr>
<tr>
<td></td>
<td>Assist with implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASSIST WITH MAKING/ PACKING STUDY</td>
<td>Select best equipment for Factory.</td>
</tr>
<tr>
<td>B</td>
<td>PLANT L.B.E. FUNCTION AT FACTORY</td>
<td>Gain G.M.'s support.</td>
</tr>
<tr>
<td></td>
<td>PLANNED MAINTENANCE PROGRAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organisation Plan</td>
<td>Reduce down time.</td>
</tr>
<tr>
<td></td>
<td>Design System</td>
<td>Demonstrate cost benefit.</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>Improve organisation.</td>
</tr>
<tr>
<td></td>
<td>Train</td>
<td>Train Somalis in system and in Maintenance Practices.</td>
</tr>
<tr>
<td></td>
<td>Install</td>
<td>Have them operate system.</td>
</tr>
<tr>
<td></td>
<td>Expand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FACTORY SERVICES ENGINEERING</td>
<td>Improve reliability of plant.</td>
</tr>
<tr>
<td></td>
<td>Develop Rehabilitation Plans for Electricity</td>
<td>Design for new improved Plant.</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLAN L.B.E. FUNCTION AT FACTORY</td>
<td>Gain G.M.'s support.</td>
</tr>
<tr>
<td>MILESTONES</td>
<td>SUPPORT ACTIVITIES</td>
<td>RESOURCE NEEDS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Programme approval by</td>
<td>-</td>
<td>Transportation</td>
</tr>
<tr>
<td>G.M./Director Public Enterprises</td>
<td></td>
<td>Counterpart at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factory until April, 1984</td>
</tr>
<tr>
<td>System approved by Tech. Mgt.</td>
<td>-</td>
<td>Translation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training workshop</td>
</tr>
<tr>
<td>Trainees graduate</td>
<td>Provision of trained counterpart</td>
<td>Tools Typing Copying</td>
</tr>
<tr>
<td>System Start up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System handover</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programme approval by</td>
<td>-</td>
<td>Transportation</td>
</tr>
<tr>
<td>G.M./Director Public Enterprises</td>
<td></td>
<td>Counterpart at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factory until May, 1984</td>
</tr>
<tr>
<td>Manager completes training</td>
<td></td>
<td>Translation</td>
</tr>
<tr>
<td>Manager completes</td>
<td></td>
<td>Training workshop</td>
</tr>
<tr>
<td>production study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommendations approved</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Structure / Job description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>approved by G.M.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programme approved by</td>
<td>Provision of trained counterpart</td>
<td>Transportation</td>
</tr>
<tr>
<td>G.M./Director of F.E.</td>
<td></td>
<td>Counterpart at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factory until May, 1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Translation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Workshop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tools Typing Copying</td>
</tr>
<tr>
<td>Items as for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigarette and Match Factory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 MAY, 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Findings agreed by Technical</td>
<td>-</td>
<td>Measuring and testing</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td>equipment and devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposals agreed by</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>General Manager</td>
<td></td>
<td>Small tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure / Job description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>approved by G.M.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>INDUSTRIAL/MECHANICAL ENGINEERING IMPLEMENTATION</td>
<td>SCHEDULE 1983</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>FEBRUARY</td>
<td>MARCH</td>
<td>APRIL</td>
</tr>
<tr>
<td>WC 5/1/83 12/2</td>
<td>19/3 26/3</td>
<td>WC 5/1/83 12/3 19/3 26/3</td>
</tr>
</tbody>
</table>

LEGEND:
- \(\text{ENER TEAM} \)
- \(\text{OUTSOURCE} \)
- \(\text{TEAM LEADER} \)

DRAWN BY: J. RUTTER
DATE: JAN 24, 1983
SCALE: N.T.S